The Effect of Treatment with Fire Retardant on Properties of Birch Veneer and Manufactured Fire-Resistant Plywood
2023, Kawalerczyk, Jakub, Dziurka, Dorota, Pinkowski, Grzegorz, Stachowiak-Wencek, Agata, Walkiewicz, Joanna, Mirski, Radosław
Thermochemical modification of beech wood with ammonium hydroxide
2024, Doczekalska, Beata, Stachowiak-Wencek, Agata, Roszyk, Edward, Sydor, Maciej
AbstractFour variants of the thermochemical modification were conducted on beech wood at a temperature of 130 °C, employing NH4OH concentrations of 5% or 10% for durations of either 12 or 24 h. The weight% gain (WPG) and bulking coefficient (BC) were initially calculated. Subsequently, the wood’s degree of discoloration was assessed using the CIELAB-colour-system. Chemical structure alterations were determined through Fourier transform infrared spectroscopy (FTIR), while the compressive strength of the wood parallel to the grain was measured. As the NH4OH concentration increased and the treatment duration extended, the samples displayed simultaneous weight increase and volume reduction. The ΔE* values of the samples ranged from 19.33 to 21.09 units, indicating significant color alteration. FTIR analysis revealed differences between the spectra of the unmodified control sample and the NH4OH-treated samples. The modification reduced in hydroxyl and carboxyl groups within the main and side chains of hemicelluloses. Additionally, a decrease in the absorption peak intensity of the unconjugated carbonyl group at 1740 cm− 1 indicated a relative reduction in hemicellulose content. Compressive strength tests showed that the thermochemical modification improved the modulus of elasticity, increasing it from 10,898 MPa (in the control sample) to a range of 11,663 − 13,390 MPa. Similarly, the compressive strength increased from 77.10 MPa to 81.56-107.19 MPa. Interestingly, this improvement was more pronounced with higher concentrations of NH4OH and prolonged modification durations.
Enhancing Functional and Visual Properties of Paulownia Wood Through Thermal Modification in a Steam Atmosphere
2025, Doczekalska, Beata, Stachowiak-Wencek, Agata, Bujnowicz, Krzysztof, Sydor, Maciej
Paulownia elongata wood is characterized by rapid mass gain, but its limited mechanical strength hinders engineering applications. This study aimed to determine the effect of thermal modification in a steam atmosphere (at temperatures of 180 °C and 190 °C for 12 or 6 h with 3 or 6 h of steam dosing) on wood’s selected physicochemical and aesthetic properties. Color changes (CIELAB), chemical composition (FTIR), density, and compressive strength parallel to the grain were evaluated. The results showed a clear darkening of the wood, a shift in hues towards red and yellow, and an increase in color saturation depending on the treatment parameters. FTIR spectroscopy confirmed a reduction in hydroxyl and carbonyl groups, indicating thermal degradation of hemicelluloses and extractives. Wood density remained relatively stable, despite observed mass losses and reduced swelling. The most significant increase in compressive strength, reaching 27%, was achieved after 6 h of modification at 180 °C with a concurrent 6 h steam dosing time. The obtained results confirm that thermal treatment can effectively improve the functional and visual properties of paulownia wood, favoring its broader application in the furniture and construction industries.
Effect of the Addition of Extractives on The Reduction Of Vocs Emissions from Lacquers in the liquid state
2023, Brózdowski, Jakub, Gajewski, Erik, Szczepaniak, Oskar, Stachowiak-Wencek, Agata