Now showing 1 - 5 of 5
No Thumbnail Available
Patent

Automatyczna samojezdna platforma pomiarowa do pomiarów wymiany gazów szklarniowych pomiędzy podłożem a atmosferą oraz do pomiarów charakterystyk spektralnych powierzchni

2020, JANUSZ OLEJNIK, BOGDAN H. CHOJNICKI, RADOSŁAW JUSZCZAK, MAREK URBANIAK, MARCIN STRÓŻECKI, KRZYSZTOF PASCHILKE, Mariusz LAMENTOWICZ, Jacek Leśny

No Thumbnail Available
Publication

Scots pine responses to drought investigated with eddy covariance and sap flow methods

2023, Dukat, Paulina, Ziemblińska, Klaudia, Räsänen, Matti, Vesala, Timo, Olejnik, Janusz, Urbaniak, Marek

AbstractScots pine, as one of the dominant European tree species in the temperate zone, is experiencing intensified water deficits, especially in north-western and central Poland, where it suffers from frequent droughts and generally low precipitation. This work investigates drought impact on forest functioning, by analysing ecosystem transpiration under normal as well as dry conditions. Therefore, eddy covariance (EC) and sap flow measurements (using the thermal heat balance, THB, method) were combined to estimate transpiration (T) in two different-aged Scots pine (Pinus sylvestris) stands in north-western Poland: Mezyk (ME; 26 years old) and Tuczno (TU; 67 years old). Transpiration (T) estimates regarding EC measurements were derived from gross primary productivity (GPP) fluxes and vapour pressure deficit (VPD) dependence, considering their common relationship with stomatal activity. In 2019, the year following severe drought in Poland and Europe in general, total annual transpiration estimated based on sap flow measurements (TSF) was significantly lower than EC-derived transpiration (TEC) at both sites. The total ratio of TSF/TEC for the growing season (March–August) was 0.64 and 0.41 at ME and TU, respectively. We thus speculate that the understory, which was more abundant in TU than in ME, and which could only be observed by the EC system, may be responsible for the observed discrepancies. Bigger differences between TSF and TEC occurred under dry and wet conditions, while both were fairly similar under moderate conditions. The analysis of the relationships between TSF and soil water content (SWC) at depth of 10 cm revealed that there is a thresholds (SWC ~ 3.5%) at which TSF starts to decrease sharply, presumably due to stomatal closure. However, the decrease in GPP fluxes at the same time was less pronounced, indicating the impact of additional non-stomatal factor on water conductivity. We generally conclude that care should be taken if the conclusion of the occurrence of drought stress of some plants is derived from a bulk evapotranspiration flux, as it is commonly done with EC measurements averaging over the whole ecosystem. Our results also support the notion that non-stomatal water losses are an important element during extreme dry conditions, and that these may appear not only when stomata are already closed.

No Thumbnail Available
Publication

Decoupling of economic growth and CO2 emissions in 11 European Union Member States in Central and Eastern Europe

2025, Ziemblińska, Klaudia, Urbaniak, Marek, Jinlong, Huang, Olejnik, Janusz, Kundzewicz, Zbigniew W.

No Thumbnail Available
Publication

Storing Carbon in Forest Biomass and Wood Products in Poland—Energy and Climate Perspective

2023, Kundzewicz, Zbigniew W., Olejnik, Janusz, Urbaniak, Marek, Ziemblińska, Klaudia

Huge amounts of carbon being sequestered in forest ecosystems make them an important land carbon sink at the global scale. Their ability to withdraw carbon dioxide (CO2) from the atmosphere, whose concentration is gradually increasing due to anthropogenic emissions, renders them important natural climate-mitigation solutions. The urgent need for transition from high to zero net emission on country, continental, and global scales, to slow down the warming to an acceptable level, calls for the analysis of different economic sectors’ roles in reaching that ambitious goal. Here, we examine changes in CO2 emission and sequestration rates during recent decades focusing on the coal-dominated energy sector and Land Use, Land-Use Change, and Forestry (LULUCF) as well as wood production at the country level. The main purpose of the presented study is to examine the potential of storing carbon in standing forest biomass and wood products in Poland as well as the impact of disturbances. The ratio of LULUCF absorption of CO2 to its emission in Poland has ranged from about 1% in 1992 to over 15% in 2005. From a climate-change mitigation point of view, the main challenge is how to maximize the rate and the duration of CO2 withdrawal from the atmosphere by its storage in forest biomass and wood products. Enhancing carbon sequestration and storage in forest biomass, via sustainable and smart forestry, is considered to be a nature-based climate solution. However, not only forests but also wood-processing industries should be included as important contributors to climate-change mitigation, since harvested wood products substitute materials like concrete, metal, and plastic, which have a higher carbon footprint. The energy perspective of the paper embraces two aspects. First, CO2 sequestration in forests and subsequently in harvested wood products, is an effective strategy to offset a part of national CO2 emissions, resulting largely from fossil fuel burning for energy-production purposes. Second, wood as biomass is a renewable energy source itself, which played an important role in sustaining energy security for many individual citizens of Poland during the unusual conditions of winter 2022/2023, with a scarce coal supply.

No Thumbnail Available
Publication

Impact of different reforestation techniques on carbon stocks in soil and biomass of 5-year-old Scots pine crops at the windthrow area

2025, Ziemblińska, Klaudia, Jasik, M., Małek, S., Pająk, M., Woś, B., Urbaniak, Marek, Olejnik, Janusz