Now showing 1 - 3 of 3
No Thumbnail Available
Publication

Experimental Analysis of Bonding in Steel Glued into Pine Timber

2024, Derkowski, Adam, Chuda-Kowalska, Monika, Kawalerczyk, Jakub, Dziurka, Dorota, Mirski, Radosław

Combining steel with wood has been practised for many years. The issue is related to two main areas, i.e., bonding steel elements with wood so that they serve as connectors facilitating the assembly of wood elements and bonding steel elements to wood beams to improve their load-bearing capacity. In the first case, the adhesives used may be relatively expensive and more difficult to apply, whereas in the second one, especially when steel elements are glued inside the glulam (GL) beams, it is better if the adhesives used are more accessible to apply and cheaper. As it seems rational to reinforce wood with high-modulus ties, research has been carried out to compare the connection quality of commercially available adhesives that can be used for this purpose. Moreover, thermosetting adhesives have been applied as an alternative and cheaper solution. Thermostat adhesives also have a high pH of the bond, which prevents the steel from rusting. The research shows that the load-bearing capacity of the bond depends on whether the bars are ribbed or sheet metal. Moreover, among thermosetting adhesives, the most favourable load-bearing values were obtained using a mixture of PF/pMDI (phenol formaldehyde resin/polymeric diphenylmethane diisocyanate) and powder from recycled tyres. The shear strength of these joints was 1.63 N/mm2 and 3.14 N/mm2 for flat specimens and specimens with ribbed bars, respectively.

No Thumbnail Available
Publication

Activated Carbon from Coconut Shells as a Modifier of Urea–Formaldehyde Resin in Particleboard Production

2024, Kawalerczyk, Jakub, Dukarska, Dorota, Antov, Petar, Stuper-Szablewska, Kinga, Dziurka, Dorota, Mirski, Radosław

Various methods for the effective modification of urea–formaldehyde (UF) adhesives, aimed at enhancing the performance of wood-based materials, have been continually explored worldwide. The aim of this work was to investigate and evaluate the effect of introducing small amounts (0.25–1.5%) of activated carbon from coconut shells (ACCS) in UF adhesive on the properties of particleboard. The performed investigations of the adhesive mixture’s properties showed an increase in both viscosity and reactivity. Moreover, the use of loadings of 0.75% and 1% had a positive effect on mechanical properties such as bending strength, modulus of elasticity, and internal bond. In these variants, a delay in the degradation of the adhesive bonds by water was also observed, as indicated by the lower thickness swelling values measured after 2 h. However, under long-term exposure to water, the modification had no considerable effect on the dimensional stability of the boards. Markedly, the addition of 1 and 1.5% of ACCS resulted in a reduction in formaldehyde content, which can be attributed to the excellent adsorption capacity of activated carbon. Overall, a loading of 1% was found to be optimal, resulting in improved strength, enhanced water resistance, and reduced formaldehyde content.

No Thumbnail Available
Publication

The effect of urea-formaldehyde adhesive modification with diisocyanate-functionalized nanocellulose on the properties of particleboard

2024, Kawalerczyk, Jakub, Dziurka, Dorota, Dukarska, Dorota, Woźniak, Magdalena, Walkiewicz, Joanna, Mirski, Radosław