Now showing 1 - 8 of 8
No Thumbnail Available
Publication

The Effect of Treatment with Fire Retardant on Properties of Birch Veneer and Manufactured Fire-Resistant Plywood

2023, Kawalerczyk, Jakub, Dziurka, Dorota, Pinkowski, Grzegorz, Stachowiak-Wencek, Agata, Walkiewicz, Joanna, Mirski, Radosław

No Thumbnail Available
Publication

Impact of the Heat Treatment Duration on Color and Selected Mechanical and Chemical Properties of Scots Pine Wood

2022, Piernik, Magdalena, Woźniak, Magdalena, Pinkowski, Grzegorz, Szentner, Kinga Krystyna, Ratajczak, Izabela, Krauss, Andrzej

The aim of this study was to assess the effect of the duration of heat treatment on changes in the color, as well as the chemical and mechanical properties of Scots pine sapwood. An important element of the research was to obtain the assumed temperature in the entire volume of samples. Quantitative changes in color and its components were recorded, while mechanical properties were determined in tests of compressive strength parallel and perpendicular to the grain, longitudinal tensile strength and modulus of elasticity and impact strength. The novelty of the research was to determine the above-mentioned parameters for twin samples with identical moisture contents. Chemical analyses were conducted on heat-treated wood that was subjected to heat treatment at 220 °C for a period from 1 to 8 h. Extension of the heat treatment duration resulted in the increasing darkening of the wood, as well as a further reduction in the impact strength and tensile strength parallel to the grain by approx. 40 and 50%, respectively, compared to the control wood, but also compared to heat-treated wood for a shorter treatment duration. The heat treatment of wood caused changes in the contents of the wood components, as well as the elemental composition in the heat-treated wood, compared to the control pine. The changes in the structure of the heat-treated wood were confirmed by the attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Observed quantitative changes in the main wood components, its structural changes, as well as wood decomposition and increased crystallinity of cellulose explain significant changes in both the mechanical properties and the color of heat-treated wood.

No Thumbnail Available
Publication

The Brinell Method for Determining Hardness of Wood Flooring Materials

2020, Sydor, Maciej, Pinkowski, Grzegorz, Jasińska, Anna

We hypothesize that the ability to recovery the depth of the indentation increases with increasing the hardness of the flooring material. The research was carried out for ten lignocellulosic flooring materials: merbau, oak, maple, red oak, laminated HDF (high-density fiberboard), innovative plywood, beech, pine, peasantry, iroko. The hardness was examined using the Brinell method, and additionally, the elastic indentation of the indenter was measured during the hardness test. On this basis, the permanent (plastic) and temporary (elastic) component of total deformation was determined. Different ability to recovery was found. The harder materials were the higher percentage of elastic indentation in total indentation depth. Moreover, it was found that the measurement of the indentation diameter in wood materials is characterized by high uncertainty and measurements based on the depth of the indentation are more unambiguous and of greater practical importance, especially when testing hard lignocellulosic flooring materials.

No Thumbnail Available
Publication

Indentation Hardness and Elastic Recovery of Some Hardwood Species

2022, Sydor, Maciej, Pinkowski, Grzegorz, Kučerka, Martin, Kminiak, Richard, Antov, Petar, Rogoziński, Tomasz

The purpose of the study was to measure the Brinell hardness (HB) of six wood species and evaluate the ability to recover the depth of the imprint (self-re-deformation). Straight-grain clear samples of ash, beech, alder, birch, iroko, and linden wood were prepared. Measurements were made in the three main reference timber cross-sections: radial (R), tangential (T), and axial/longitudinal (L) and with two measuring loads of 30 kG and 100 kG (294.2 N and 980.7 N). The tested wood species could be classified into hard (ash, beech), medium-hard (alder, birch, iroko), and soft (linden) wood species. The HBs of each tested wood species differed in the cross-sections, i.e., side hardness (R, T) and end hardness (L). Higher HB values were obtained at 100 kG load in all species and all three cross-sections. The lowest influence of the measurement force value on the HB value was revealed for the soft wood species (linden: 107–118%). This influence was visible for the other five medium-hard and hard wood species, ranging from 125% to 176%. The percentage of temporary imprint in total imprint depth (x/H) varied from 12 to 33% (linden 12–18%—the lowest self-re-deformation ability; beech 25–33%—the highest self-re-deformation ability). The results of this study underline that the higher the density of the wood, the higher the Brinell hardness, and, simultaneously, the greater the measurement force used, the higher the Brinell hardness measured. The ability of self-re-deformation in wood’s R and T cross-sections depends on the wood density and the measuring force used. In contrast, this ability only depends on the wood density in the L cross-section. Those observations imply that the compaction of the cell structure during side compression is mainly non-destructive, while the longitudinal deformation of the cell structure (the buckling of cell walls and fracture of ends of the cells) is to a great degree destructive and irreversible. These results can be used in the construction and furniture sectors, especially when designing products and planning the woodworking of highly loaded wood floors and furniture elements.

No Thumbnail Available
Publication

Effect of chip thickness, wood cross-sections, and cutting speed on surface roughness and cutting power during up-milling of beech wood

2023, Piernik, Magdalena, Pinkowski, Grzegorz, Krauss, Andrzej

The aim of the conducted experiments was to determine the effect of selected machining parameters on power consumption and surface quality obtained during the milling of beech wood using a computerized numerical control woodworking machine. Surface roughness was tested using the contact roughness measurement method, while roughness parameters Ra and Rz were recorded and cutting energy was determined. Tests were conducted for two variants of cutting speed (7.5 and 15 m·s-1) as well as three variants of chip thickness (0.10, 0.06, and 0.02 mm); additionally, the tests examined different cross-sections of wood. It was found that greater chip thickness and feed speed caused an increase in surface roughness and cutting power. In turn, cutting speed had no effect on surface roughness, whereas its increase resulted in increased cutting power. Surface roughness at the radial and tangential cross-sections was comparable, while it was greater at the transverse cross-section. It was also found that cutting power was lowest at the radial cross-section, while it was greater at the tangential and the greatest at the transverse cross-section.

No Thumbnail Available
Publication

Material Removal in Mycelium-Bonded Composites Through Laser Processing

2025, Sydor, Maciej, Pinkowski, Grzegorz, Bonenberg, Agata

Mycelium-bonded composites (MBCs), or myco-composites, represent a novel engineered material that combines natural lignocellulosic substrates with a fungal matrix. As a sustainable alternative to plastics, MBCs are gaining increasing interest; however, their large-scale industrial adoption remains limited, partly due to low social acceptance resulting from their unattractive appearance. Laser engraving provides a promising method for fabricating intricate patterns and functional surfaces on MBCs, minimizing tool wear, material loss, and environmental impact, while enhancing esthetic and engineering properties. This study investigates the influence of CO2 laser parameters on the material removal rate during the engraving of myco-composites, focusing on the effects of variable laser power, beam defocus, and head feed rate on engraving outcomes. The results demonstrate that laser power and beam focus significantly impact material removal in mycelium-bonded composites. Specifically, increasing the laser power results in greater material removal, which is more pronounced when the beam is focused due to higher energy density. In contrast, a beam defocused by 1 mm produces less intense material removal. These findings highlight the critical role of beam focus—surpassing the influence of power alone—in determining engraving quality, particularly on irregular or uneven surfaces. Moreover, reducing the laser head feed rate at a constant power level increases the material removal rate linearly; however, it also results in excessive charring and localized overheating, revealing the low thermal tolerance of myco-composites. These insights are essential for optimizing laser processing techniques to fully realize the potential of mycelium-bonded composites as sustainable engineering materials, simultaneously maintaining their appearance and functional properties.

No Thumbnail Available
Publication

Effect of Chip Thickness and Tool Wear on Surface Roughness and Cutting Power during Up-Milling Wood of Different Density

2024, Pinkowski, Grzegorz, Piernik, Magdalena, Wołpiuk, Marcin, Krauss, Andrzej

No Thumbnail Available
Publication

Color as an Indicator of Properties in Thermally Modified Scots Pine Sapwood

2022, Piernik, Magdalena, Woźniak, Magdalena, Pinkowski, Grzegorz, Szentner, Kinga Krystyna, Ratajczak, Izabela, Krauss, Andrzej

The aim of this study was to determine the dependencies between mechanical properties of modified wood and its color. Within its scope, quantitative changes in color and chemical composition (mass loss, total carbon content, content of extractives and main components of wood), as well as mechanical properties (compressive strength along the grain, strength and modulus of elasticity in longitudinal tension tests, compression across the grain and impact resistance) of the modified Scots pine sapwood, were determined. Modifications were conducted in the atmosphere of superheated steam (time—4 h, temperature of 130, 160, 190, 220 °C). Thermal modification of wood results in an increase in the modulus of elasticity, a reduction of elasticity, longitudinal tensile strength and compressive strength perpendicular to grain. It was found that color parameters ∆E, ∆L and ∆a are linear functions of the modification temperature. The existence of functional dependencies between mass loss, longitudinal tensile strength, radial modulus of elasticity and parameters of ∆E and ∆L makes it possible to determine these properties of modified wood based on color. In turn, chemical analysis indicated that an increase in the temperature of wood modification caused a decrease of holocellulose and hemicelluloses contents, especially in wood samples modified at 220 °C.