Now showing 1 - 3 of 3
No Thumbnail Available
Publication

Densification of Delignified Wood: Influence of Chemical Composition on Wood Density, Compressive Strength, and Hardness of Eurasian Aspen and Scots Pine

2024, Mania, Przemysław, Kupfernagel, Carlo, Curling, Simon

The densification of solid wood is a well-studied technique that aims to increase the strength and hardness of the material by permanently compressing the wood tissue. To optimise the densification process in this study, a pre-treatment with sodium sulphite was used (delignification). With delignification prior to densification, one achieves higher compression ratios and better mechanical properties compared to densification without pre-treatment. The reactivity of syringyl (dominant in hardwoods) and guaiacyl (dominant in softwoods) lignin towards delignification is different. The influences of this difference on the delignification and densification of softwoods and hardwoods need to be investigated. This study aimed to densify wood after delignification and investigate how variations in chemical composition between coniferous and deciduous species affect the densification process. Scots pine and Eurasian aspen specimens with a similar initial density were investigated to study the influence of the different lignin chemistry in softwoods and hardwoods on the densification process. Both timbers were delignified with sodium sulphite and sodium hydroxide and subsequently densified. While the delignification was twice as efficient in aspen than in pine, the compression ratios were almost identical in both species. The Brinell hardness and compressive strength showed a more significant increase in aspen than in Scots pine; however, one exception was the compressive strength in a radial direction, which increased more effectively in Scots pine. Scanning electron microscopy (SEM) revealed the microstructure of densified aspen and Scots pine, showing the crushing and collapse of the cells.

No Thumbnail Available
Publication

Swelling Behaviour of Bamboo (Phyllostachys pubescens)

2024, Roszyk, Edward, Kropaczewski, Radosław, Mania, Przemysław, Broda, Magdalena, Uniwersytet Przyrodniczy w Poznaniu

Bamboo is a plant with various applications. As a natural, renewable material that exhibits good mechanical performance, it seems to be an interesting alternative to wood, which has become a scarce and expensive commodity. However, comprehensive knowledge of its properties is necessary to maximise its potential for various industrial purposes. The swelling behaviour of bamboo is one of the features that has not yet been sufficiently investigated. Therefore, in this research, we aimed to measure and analyse the swelling pressure and kinetics of bamboo blocks. The results show that similar to wood, the swelling kinetics of bamboo depend on its density: the denser the tissue, the higher the maximum swelling value recorded. The maximum tangential swelling measured was about 5%–6%, which is lower than the value for the most commonly used wood species. Swelling pressure ranged from 1.16 MPa to 1.39 MPa, depending on the bamboo density: the denser the sample, the shorter the time required to reach maximum swelling pressure. Like in wood, the smallest linear increase in size due to swelling was observed in the longitudinal direction (0.71%). However, opposite to wood, more pronounced swelling was recorded in the radial direction (over 7%) than in the tangential direction (nearly 6%). The results show that bamboo’s swelling behaviour makes it a good material for use in variable humidity conditions, being more favourable than the unmodified wood of many species.

No Thumbnail Available
Publication

Wood Quality of Pendulate Oak on Post-Agricultural Land: A Case Study Based on Physico-Mechanical and Anatomical Properties

2024, Tomczak, Karol, Mania, Przemysław, Cukor, Jan, Vacek, Zdeněk, Komorowicz, Magdalena, Tomczak, Arkadiusz

Oak is one of the most economically important hardwood tree species in Europe, and its prevalence will increase due to progressing global climate change, according to predictive models. With the increasing demand for timber and with the need for a balance between carbon emissions and sequestration, it is essential to address the afforestation of agricultural land. Therefore, this research aimed to investigate the physico-mechanical properties and anatomical structure of pendulate oak (Quercus robur L.) wood—specifically focusing on the trunk’s cross-section—in post-agricultural areas compared with the forest land in the western part of Poland. Wood density, bending strength, modulus of elasticity, and other parameters were analyzed from 1626 wood samples. The analysis of physico-mechanical properties reveals that, historically, agricultural land use has an almost negligible impact on wood quality. Despite significant differences in small vessel diameter and fiber length favoring trees from post-agricultural land, the physico-mechanical properties remain consistent. Large vessel measurements show comparable diameter and length in both land types. These findings suggest that post-agricultural land can serve as an effective alternative for high-quality pendulate oak wood production for industrial purposes. However, wood from post-agricultural land may exhibit a decrease in modulus of rupture by over 30% and potentially lower density above the trunk’s halfway point. This observation hints at the fact that oak trees in post-agricultural areas could be cultivated in shorter rotation periods compared to forest land.