Targeted and Untargeted Metabolomic Analyses Reveal Organ Specificity of Specialized Metabolites in the Model Grass Brachypodium distachyon
2022, Piasecka, Anna, Sawikowska, Aneta, Jedrzejczak-Rey, Nicolas, Piślewska-Bednarek, Mariola, Bednarek, Paweł
Brachypodium distachyon, because of its fully sequenced genome, is frequently used as a model grass species. However, its metabolome, which constitutes an indispensable element of complex biological systems, remains poorly characterized. In this study, we conducted comprehensive, liquid chromatography-mass spectrometry (LC-MS)-based metabolomic examination of roots, leaves and spikes of Brachypodium Bd21 and Bd3-1 lines. Our pathway enrichment analysis emphasised the accumulation of specialized metabolites representing the flavonoid biosynthetic pathway in parallel with processes related to nucleotide, sugar and amino acid metabolism. Similarities in metabolite profiles between both lines were relatively high in roots and leaves while spikes showed higher metabolic variance within both accessions. In roots, differences between Bd21 and Bd3-1 lines were manifested primarily in diterpenoid metabolism, while differences within spikes and leaves concerned nucleotide metabolism and nitrogen management. Additionally, sulphate-containing metabolites differentiated Bd21 and Bd3-1 lines in spikes. Structural analysis based on MS fragmentation spectra enabled identification of 93 specialized metabolites. Among them phenylpropanoids and flavonoids derivatives were mainly determined. As compared with closely related barley and wheat species, metabolic profile of Brachypodium is characterized with presence of threonate derivatives of hydroxycinnamic acids.
Validation of Molecular Markers Significant for Flowering Time, Plant Lodging, Stem Geometry Properties, and Raffinose Family Oligosaccharides in Pea (Pisum sativum L.)
2022, Gawłowska, Magdalena, Lahuta, Lesław, Boros, Lech, Sawikowska, Aneta, Kumar, Pankaj, Knopkiewicz, Michał, Kaczmarek, Zygmunt, Święcicki, Wojciech
The field pea (Pisum sativum L.) is studied as an important grain legume used in both human and animal feed. DNA markers can contribute to the rapid breeding of novel pea cultivars. This study aimed to identify such molecular markers as the number of days to the beginning of flowering, plant lodging, and stem geometry. Phenotypic measurements were recorded during the field trials. Qualitative and quantitative analyses of soluble carbohydrates (e.g., monosaccharides, sucrose, and raffinose family oligosaccharides) in the pea seeds were performed. A t-test was used to detect the significance of markers associated with each trait. Fifteen markers that were significant for thirteen traits were identified in this analysis. The same markers were identified for verbascose concentration in 2013 and 2014 and stem-wall thickness in 2014 and 2015. Our marker for the number of days to the beginning of flowering (AB141) was 4 cM from the AB64 marker, which was identified as a marker linked to days to 50% bloom. We found a negative correlation between lodging score at the end of flowering and stem diameter in the middle (2015, −0.40) of this study set of pea lines. Although similar correlations were detected in the Carneval × MP1401 population, the correlation between lodging at maturity and diameter in the middle and upper stem sections was positive. In markers validation, particularly for polygenic traits, a statistical analysis of the observed characters is an important step for a division of the trait values into a bimodal distribution.
Sztuczna inteligencja a prace dyplomowe: wsparcie czy zagrożenie?
2025, Sawikowska, Aneta
Leaf rust (Puccinia recondita f. sp. secalis) triggers substantial changes in rye (Secale cereale L.) at the transcriptome and metabolome levels
2024, Krępski, T., Piasecka, A., Święcicka, M., Kańczurzewska, M., Sawikowska, Aneta, Dmochowska-Boguta, M., Rakoczy-Trojanowska, M., Matuszkiewicz, M.
Abstract Background Rye (Secale cereale L.) is a cereal crop highly tolerant to environmental stresses, including abiotic and biotic stresses (e.g., fungal diseases). Among these fungal diseases, leaf rust (LR) is a major threat to rye production. Despite extensive research, the genetic basis of the rye immune response to LR remains unclear. Results An RNA-seq analysis was conducted to examine the immune response of three unrelated rye inbred lines (D33, D39, and L318) infected with compatible and incompatible Puccinia recondita f. sp. secalis (Prs) isolates. In total, 877 unique differentially expressed genes (DEGs) were identified at 20 and 36 h post-treatment (hpt). Most of the DEGs were up-regulated. Two lines (D39 and L318) had more up-regulated genes than down-regulated genes, whereas the opposite trend was observed for line D33. The functional classification of the DEGs helped identify the largest gene groups regulated by LR. Notably, these groups included several DEGs encoding cytochrome P450, receptor-like kinases, methylesterases, pathogenesis-related protein-1, xyloglucan endotransglucosylases/hydrolases, and peroxidases. The metabolomic response was highly conserved among the genotypes, with line D33 displaying the most genotype-specific changes in secondary metabolites. The effect of pathogen compatibility on metabolomic changes was less than the effects of the time-points and genotypes. Accordingly, the secondary metabolome of rye is altered by the recognition of the pathogen rather than by a successful infection. The results of the enrichment analysis of the DEGs and differentially accumulated metabolites (DAMs) reflected the involvement of phenylpropanoid and diterpenoid biosynthesis as well as thiamine metabolism in the rye immune response. Conclusion Our work provides novel insights into the genetic and metabolic responses of rye to LR. Numerous immune response-related DEGs and DAMs were identified, thereby clarifying the mechanisms underlying the rye response to compatible and incompatible Prs isolates during the early stages of LR development. The integration of transcriptomic and metabolomic analyses elucidated the contributions of phenylpropanoid biosynthesis and flavonoid pathways to the rye immune response to Prs. This combined analysis of omics data provides valuable insights relevant for future research conducted to enhance rye resistance to LR.
Flaxseed oil cake improves basil (Ocimum basilicum L.) yield under drought stress by increasing herb biomass and quality of essential oil
2024, Salachna, P., Wesołowska, A., Zawadzińska, A., Kańczurzewska, M., Sawikowska, Aneta, Darras, A., Neugebauerová, J., Meller, E., Pietrak, A., Piechocki, R., Łopusiewicz, Ł.
Metabolomic Aspects of Conservative and Resistance-Related Elements of Response to Fusarium culmorum in the Grass Family
2022, Piasecka, Anna, Sawikowska, Aneta, Witaszak, Natalia, Waśkiewicz, Agnieszka, Kańczurzewska, Marta, Kaczmarek, Joanna, Lalak-Kańczugowska, Justyna
Background: Fusarium head blight (FHB) is a serious fungal disease affecting crop plants, causing substantial yield reductions and the production of mycotoxins in the infected grains. Achieving progress in the breeding of crops with increased resistance and maintaining a high yield is not possible without a thorough examination of the molecular basis of plant immunity responses. Methods: LC-MS-based metabolomics approaches powered by three-way ANOVA and the selec-tion of differentially accumulated metabolites (DAMs) were used for studying plant immunity. A correlation network and functional enrichment analysis were conducted on grains of barley and wheat genotypes that were resistant or susceptible to FHB, as well as on the model grass Brachypodium distachyon (Bd), as this is still poorly understood at the metabolomic level. Results: We selected common and genotype-specific DAMs in response to F. culmorum inoculation. The immunological reaction at the metabolomic level was strongly diversified between resistant and susceptible genotypes. DAMs that were common to all tested species from the porphyrin, flavonoid, and phenylpropanoid metabolic pathways were highly correlated, reflecting con-servativeness in the FHB response in the Poaceae family. Resistance-related DAMs belonged to different structural classes, including tryptophan-derived metabolites, pyrimidines, the amino acids proline and serine, as well as phenylpropanoids and flavonoids. The physiological re-sponse to F. culmorum of Bd was close to that of barley and wheat genotypes; however, metabo-lomic changes were strongly diversified. Conclusions: Combined targeted and untargeted metabolomics provides comprehensive knowledge about significant elements of plant immuni-ty that have the potential to be molecular biomarkers of enhanced resistance to FHB in the grass family. Thorough examination of the Bd metabolome in juxtaposition with diversified geno-types of barley and wheat facilitated its use as a model grass for plant–microbe interaction.