Now showing 1 - 5 of 5
No Thumbnail Available
Publication

Plant Metabolites Affect Fusarium proliferatum Metabolism and In Vitro Fumonisin Biosynthesis

2023, Lalak-Kańczugowska, Justyna, Witaszak, Natalia, Waśkiewicz, Agnieszka, Bocianowski, Jan, Stępień, Łukasz

Fusarium proliferatum is a common hemi-biotrophic pathogen that infect a wide range of host plants, often leading to substantial crop loss and yield reduction. F. proliferatum synthesizes various mycotoxins, and fumonisins B are the most prevalent. They act as virulence factors and specific effectors that elicit host resistance. The effects of selected plant metabolites on the metabolism of the F. proliferatum strain were analyzed in this study. Quercetin-3-glucoside (Q-3-Glc) and kaempferol-3-rutinoside (K-3-Rut) induced the pathogen’s growth, while DIMBOA, isorhamnetin-3-O-rutinoside (Iso-3-Rut), ferulic acid (FA), protodioscin, and neochlorogenic acid (NClA) inhibited fungal growth. The expression of seven F. proliferatum genes related to primary metabolism and four FUM genes was measured using RT-qPCR upon plant metabolite addition to liquid cultures. The expression of CPR6 and SSC1 genes was induced 24 h after the addition of chlorogenic acid (ClA), while DIMBOA and protodioscin reduced their expression. The transcription of FUM1 on the third day of the experiment was increased by all metabolites except for Q-3-Glc when compared to the control culture. The expression of FUM6 was induced by protodioscin, K-3-Rut, and ClA, while FA and DIMBOA inhibited its expression. FUM19 was induced by all metabolites except FA. The highest concentration of fumonisin B1 (FB1) in control culture was 6.21 µg/mL. Protodioscin did not affect the FB content, while DIMBOA delayed their synthesis/secretion. Flavonoids and phenolic acids displayed similar effects. The results suggest that sole metabolites can have lower impacts on pathogen metabolism and mycotoxin synthesis than when combined with other compounds present in plant extracts. These synergistic effects require additional studies to reveal the mechanisms behind them.

No Thumbnail Available
Publication

Field Assessment of Lamium album in Reducing Mycotoxin Biosynthesis in Winter Wheat Infected by Fusarium culmorum

2024, Uwineza, Pascaline Aimee, Kwiatkowska, Maria, Gwiazdowski, Romuald, Stępień, Łukasz, Bryła, Marcin, Waśkiewicz, Agnieszka

Fungicides play a crucial role in conventional agriculture for disease control, but their prolonged use raises health and environmental concerns. Fusarium culmorum (F. culmorum), a major wheat pathogen causing Fusarium head blight (FHB) and Fusarium crown rot (FCR), poses significant mycotoxigenic threats. The application of natural plant extracts has been proven to fight against phytopathogenic fungi. This study aimed to a field experiment that was carried out at the Field Experimental Station of the Institute of Plant Protection—National Research Institute in Winna Góra, Poland, during the 2022/2023 season to evaluate the potential of Lamium album (L. album) flower extract as a foliar spray against mycotoxigenic fungi in two winter wheat varieties: Arkadia and Julius. The supercritical carbon dioxide extraction method (SC-CO2) was employed to obtain the L. album flower extract. Ergosterol (ERG) and mycotoxin accumulation in the harvested wheat grains were analyzed using chromatography-based methods. The results demonstrated a notable reduction in ERG content in the field plots treated with L. album flower extract, from 26.07 µg/g (control group) to 8.91 µg/g (extract-treated group) for Arkadia and from 70.02 µg/g (control group) to 30.20 µg/g (extract-treated group) for Julius. The treatment with L. album reduced mycotoxin biosynthesis in both varieties, with deoxynivalenol (DON) and zearalenone (ZEN) production significantly decreased. Additionally, Arkadia exhibited greater resistance to Fusarium infection, and the antifungal effect of L. album was more pronounced than in the Julius variety, which proved to be more sensitive. In conclusion, L. album flower extract exhibited promising antifungal effects in field experiments to fight against F. culmorum in winter wheat varieties, suggesting a potential alternative to synthetic fungicides. However, as complete prevention of mycotoxin contamination was not achieved, further research is warranted to optimize extract concentrations and conduct long-term analyses to consider this plant extract as a sustainable control agent.

No Thumbnail Available
Publication

Efficacy of Lamium album as a natural fungicide: impact on seed germination, ergosterol, and mycotoxins in Fusarium culmorum-infected wheat seedlings

2024, Uwineza, Pascaline Aimee, Urbaniak, Monika, Stępień, Łukasz, Gramza-Michałowska, Anna, Waśkiewicz, Agnieszka

Fusarium culmorum is a major wheat pathogen, and its secondary metabolites (mycotoxins) cause damage to plants, animals, and human health. In the era of sustainable agriculture, eco-friendly methods of prevention and control are constantly needed. The use of plant extracts as biocontrol agents has gained popularity as they are a source of active substances that play a crucial role in fighting against phytopathogens. This study evaluated the impact of Lamium album on wheat seed germination and seedling growth. In a pot experiment, the effect of L. album on wheat seedlings artificially inoculated with F. culmorum was evaluated by measuring seedling growth parameters, and by using chromatographic methods, ergosterol and mycotoxins levels were analyzed. The results showed that the phytotoxic effect of L. album flower extracts on wheat seed germination and seedling growth was concentration dependent. The radicle length was also reduced compared to the control; however, L. album did not significantly affect the dry weight of the radicle. A slight phytotoxic effect on seed germination was observed, but antifungal effects on artificially infected wheat seedlings were also confirmed with the reduction of ergosterol level and mycotoxins accumulation in the roots and leaves after 21 days of inoculation. F. culmorum DNA was identified in the control samples only. Overall, this study is a successful in planta study showing L. album flower extract protection of wheat against the pathogen responsible for Fusarium crown and root rot. Further research is essential to study the effects of L. album extracts on key regulatory genes for mycotoxin biosynthetic pathways.

No Thumbnail Available
Publication

Lamium album Flower Extracts: A Novel Approach for Controlling Fusarium Growth and Mycotoxin Biosynthesis

2023, Uwineza, Pascaline Aimee, Urbaniak, Monika, Stępień, Łukasz, Gramza-Michałowska, Anna, Waśkiewicz, Agnieszka

Lamium album is a medicinal flowering plant that is rich in bioactive compounds with various biological properties. Fusarium species, known for causing significant crop losses and mycotoxin contamination, pose threats to food safety and human health. While synthetic fungicides are commonly employed for fungal management, their environmental impact prompts the ongoing development of alternative methods. This study aimed to evaluate the efficacy of L. album flower extracts in inhibiting the in vitro growth and biosynthesis of mycotoxins by Fusarium culmorum and F. proliferatum strains. The extracts were obtained by supercritical fluid extraction using CO2 (SC-CO2). The effects of various concentrations (2.5, 5, 7.5, and 10%) were assessed on a potato dextrose agar (PDA) medium using the “poisoning” technique. L. album flower extracts reduced mycelium growth by 0 to 30.59% for F. culmorum and 27.71 to 42.97% for F. proliferatum. Ergosterol content was reduced by up to 88.87% for F. culmorum and 93.17% for F. proliferatum. Similarly, the amounts of synthesized mycotoxins produced by both strains were also lower compared to control cultures. These findings are a preliminary phase for further in vivo tests planned to determine the fungistatic effect of L. album flower extracts on cereal substrates as seedlings incubated in controlled environments and under field conditions. Their phytotoxicity and biological stability, as well as the possibility of formulating a bio-preparation to protect cereals against Fusarium infections, will be evaluated.

No Thumbnail Available
Publication

Toxico-pathological effects of ochratoxin A and its diastereoisomer under in ovo conditions and in vitro evaluation of the toxicity of these toxins against the embryo Gallus gallus fibroblast cell line

2023, Bryła, Marcin, Damaziak, Krzysztof, Twarużek, Magdalena, Waśkiewicz, Agnieszka, Stępień, Łukasz, Roszko, Marek, Pierzgalski, Adam, Soszczyńska, Ewelina, Łukasiewicz-Mierzejewska, Monika, Chmiel, Marta, Wójcik, Wojciech