Płyta komórkowa HDF z rdzeniem falistym i sposób wytwarzania płyty HDF z rdzeniem falistym
2020, JERZY SMARDZEWSKI, TADEUSZ KAMISIŃSKI, WOJCIECH BATKO, DOROTA DZIURKA, RADOSŁAW MIRSKI, ARTUR FLACH, ADAM PILCH, ADAM MAJEWSKI, EDWARD ROSZYK
Trace of negative changes in environment recorded in cores of trees growing near busy city roads in Poznań, Poland – dendromonitoring of urban pollution
2023, Budzyńska, Sylwia, Budka, Anna, Roszyk, Edward, Niedzielski, Przemysław, Mleczek, Mirosław
Akustyczna płyta komórkowa HDF z rdzeniem falistym oraz sposób wytwarzania płyty komórkowej HDF z rdzeniem falistym
2018, JERZY SMARDZEWSKI, TADEUSZ KAMISIŃSKI, WOJCIECH BATKO, DOROTA DZIURKA, RADOSŁAW MIRSKI, ARTUR FLACH, ADAM PILCH, ADAM MAJEWSKI, EDWARD ROSZYK
Physical and mechanical properties of wood treated with chitosan-caffeine formulations
2025, Woźniak, Magdalena, Majka, Jerzy, Kwaśniewska-Sip, Patrycja, Krystofiak, Tomasz, Lis, Barbara Teresa, Roszyk, Edward, Cofta, Grzegorz, Ratajczak, Izabela
Physico-Mechanical and Sorption Properties ofWood Treated with Cellulose Nanofibers
2025, Woźniak, Magdalena, Majka, Jerzy, Krystofiak, Tomasz, Lis, Barbara Teresa, Roszyk, Edward, Ratajczak, Izabela
Swelling Behaviour of Bamboo (Phyllostachys pubescens)
2024, Roszyk, Edward, Kropaczewski, Radosław, Mania, Przemysław, Broda, Magdalena, Uniwersytet Przyrodniczy w Poznaniu
Bamboo is a plant with various applications. As a natural, renewable material that exhibits good mechanical performance, it seems to be an interesting alternative to wood, which has become a scarce and expensive commodity. However, comprehensive knowledge of its properties is necessary to maximise its potential for various industrial purposes. The swelling behaviour of bamboo is one of the features that has not yet been sufficiently investigated. Therefore, in this research, we aimed to measure and analyse the swelling pressure and kinetics of bamboo blocks. The results show that similar to wood, the swelling kinetics of bamboo depend on its density: the denser the tissue, the higher the maximum swelling value recorded. The maximum tangential swelling measured was about 5%–6%, which is lower than the value for the most commonly used wood species. Swelling pressure ranged from 1.16 MPa to 1.39 MPa, depending on the bamboo density: the denser the sample, the shorter the time required to reach maximum swelling pressure. Like in wood, the smallest linear increase in size due to swelling was observed in the longitudinal direction (0.71%). However, opposite to wood, more pronounced swelling was recorded in the radial direction (over 7%) than in the tangential direction (nearly 6%). The results show that bamboo’s swelling behaviour makes it a good material for use in variable humidity conditions, being more favourable than the unmodified wood of many species.
How thermal treatment affects the chemical composition and the physical, mechanical and swelling properties of Scots pine juvenile and mature wood
2024, Broda, Magdalena, Popescu, Carmen-Mihaela, Poszwa, Kamil, Roszyk, Edward
AbstractHigh variations in juvenile wood properties in the radial direction and its worse performance than mature wood make it less suitable for some applications and often treated as waste material. This study aimed to assess how thermal modification affects the chemical composition and the physical, mechanical and swelling properties of Scots pine juvenile and mature wood. An additional goal was to evaluate if the modification can equalise the differences in selected properties of juvenile wood to those of mature wood so that from waste material, juvenile wood can become a fully-fledged raw material for various industrial applications. Thermal treatment at 220 °C influenced wood chemical composition, degrading mainly hemicelluloses but also affecting cellulose and lignin, which resulted in a reduction of hydroxyls and carbonyl/carboxyl groups. These changes were more pronounced for mature than juvenile wood. It reduced mass loss and swelling rate, and increased swelling pressure in the tangential and radial directions to a higher degree for juvenile than mature wood. Changes in mechanical properties in compression were statistically significant only for mature wood, while wood hardness remained unaffected. Although the applied heat treatment improved the performance of juvenile wood by reducing its swelling rate, it did not equalise the examined properties between juvenile and mature wood. Since higher juvenile wood proportion is expected in the wood supply from the future intensively managed forests, there is still a need to find suitable modification methods or better processing techniques so that instead of being thrown away as waste, it could be used broadly in various industrial applications.
Płyta komórkowa z rdzeniem listewkowym
2018, JERZY SMARDZEWSKI, TADEUSZ KAMISIŃSKI, WOJCIECH BATKO, DOROTA DZIURKA, RADOSŁAW MIRSKI, ARTUR FLACH, ADAM PILCH, ADAM MAJEWSKI, EDWARD ROSZYK
Akustyczna płyta komórkowa z rdzeniem listewkowym oraz sposób wytwarzania akustycznej płyty komórkowej z rdzeniem listewkowym
2019, JERZY SMARDZEWSKI, TADEUSZ KAMISIŃSKI, WOJCIECH BATKO, DOROTA DZIURKA, RADOSŁAW MIRSKI, ARTUR FLACH, ADAM PILCH, ADAM MAJEWSKI, EDWARD ROSZYK
Thermochemical modification of beech wood with ammonium hydroxide
2024, Doczekalska, Beata, Stachowiak-Wencek, Agata, Roszyk, Edward, Sydor, Maciej
AbstractFour variants of the thermochemical modification were conducted on beech wood at a temperature of 130 °C, employing NH4OH concentrations of 5% or 10% for durations of either 12 or 24 h. The weight% gain (WPG) and bulking coefficient (BC) were initially calculated. Subsequently, the wood’s degree of discoloration was assessed using the CIELAB-colour-system. Chemical structure alterations were determined through Fourier transform infrared spectroscopy (FTIR), while the compressive strength of the wood parallel to the grain was measured. As the NH4OH concentration increased and the treatment duration extended, the samples displayed simultaneous weight increase and volume reduction. The ΔE* values of the samples ranged from 19.33 to 21.09 units, indicating significant color alteration. FTIR analysis revealed differences between the spectra of the unmodified control sample and the NH4OH-treated samples. The modification reduced in hydroxyl and carboxyl groups within the main and side chains of hemicelluloses. Additionally, a decrease in the absorption peak intensity of the unconjugated carbonyl group at 1740 cm− 1 indicated a relative reduction in hemicellulose content. Compressive strength tests showed that the thermochemical modification improved the modulus of elasticity, increasing it from 10,898 MPa (in the control sample) to a range of 11,663 − 13,390 MPa. Similarly, the compressive strength increased from 77.10 MPa to 81.56-107.19 MPa. Interestingly, this improvement was more pronounced with higher concentrations of NH4OH and prolonged modification durations.