Szanowni Państwo, w związku z bardzo dużą ilością zgłoszeń, rejestracją danych w dwóch systemach bibliograficznych, a jednocześnie zmniejszonym zespołem redakcyjnym proces rejestracji i redakcji opisów publikacji jest wydłużony. Bardzo przepraszamy za wszelkie niedogodności i dziękujemy za Państwa wyrozumiałość.
Repository logoRepository logoRepository logoRepository logo
Repository logoRepository logoRepository logoRepository logo
  • Communities & Collections
  • Research Outputs
  • Employees
  • AAAHigh contrastHigh contrast
    EN PL
    • Log In
      Have you forgotten your password?
AAAHigh contrastHigh contrast
EN PL
  • Log In
    Have you forgotten your password?
  1. Home
  2. Bibliografia UPP
  3. Bibliografia UPP
  4. Applying convolutional neural networks for mustard variety recognition
 
Full item page
Options

Applying convolutional neural networks for mustard variety recognition

Type
Journal article
Language
English
Date issued
2025
Author
Slebioda, Laura 
Zawieja, Bogna 
Faculty
Wydział Rolnictwa, Ogrodnictwa i Biotechnologii
Journal
Euphytica
ISSN
0014-2336
DOI
10.1007/s10681-025-03461-3
Web address
https://link.springer.com/article/10.1007/s10681-025-03461-3
Volume
221
Number
2
Pages from-to
art. 14
Abstract (EN)
The aim of this study was to develop and apply a Convolutional Neural Network (CNN) model to recognize and classify white mustard (Sinapis Alba L.) varieties, addressing the complex task of discriminating among 57 varieties. Utilizing a one-dimensional CNN model, the research focused on multivariate analysis based on a set of 15 traits. The CNN architecture included convolutional layers, batch normalization, pooling, flattening, dropout, and dense layers. The model demonstrated effectiveness in classifying varieties, achieving high accuracy and providing valuable insights into potential new varieties. Subset division, a new approach, was applied. Evaluation metrics, including accuracy, F1 score, precision, and recall, were calculated for eight subsets, confirming the model's robust performance. While this study uses mustard as an illustrative example, the method is not limited to this crop and can be extended to other agricultural crops, with potential modifications depending on the specific traits relevant to each crop. The approach contributes to agricultural advancements, offering a reliable tool for breeders to assess variety distinctness and streamline the testing process. The model’s ability to detect unknown varieties further enhances its utility in agricultural research covering a comprehensive and impactful advancement in variety classification.
Keywords (EN)
  • agricultural algorithms

  • classification

  • convolutional neural networks

  • mustard

  • variety recognition

License
cc-bycc-by CC-BY - Attribution
Open access date
January 16, 2025
Fundusze Europejskie
  • About repository
  • Contact
  • Privacy policy
  • Cookies

Copyright 2025 Uniwersytet Przyrodniczy w Poznaniu

DSpace Software provided by PCG Academia