Szanowni Państwo, w związku z bardzo dużą ilością zgłoszeń, rejestracją danych w dwóch systemach bibliograficznych, a jednocześnie zmniejszonym zespołem redakcyjnym proces rejestracji i redakcji opisów publikacji jest wydłużony. Bardzo przepraszamy za wszelkie niedogodności i dziękujemy za Państwa wyrozumiałość.
Repository logoRepository logoRepository logoRepository logo
Repository logoRepository logoRepository logoRepository logo
  • Communities & Collections
  • Research Outputs
  • Employees
  • AAAHigh contrastHigh contrast
    EN PL
    • Log In
      Have you forgotten your password?
AAAHigh contrastHigh contrast
EN PL
  • Log In
    Have you forgotten your password?
  1. Home
  2. Bibliografia UPP
  3. Bibliografia UPP
  4. A novel optimized model based on NARX networks for predicting thermal anomalies in Polish lakes during heatwaves, with special reference to the 2018 heatwave
 
Full item page
Options

A novel optimized model based on NARX networks for predicting thermal anomalies in Polish lakes during heatwaves, with special reference to the 2018 heatwave

Type
Journal article
Language
English
Date issued
2023
Author
Zhu, Senlin
Di Nunno, Fabio
Ptak, Mariusz
Sojka, Mariusz 
Granata, Francesco
Faculty
Wydział Inżynierii Środowiska i Inżynierii Mechanicznej
Journal
Science of the Total Environment
ISSN
0048-9697
DOI
10.1016/j.scitotenv.2023.167121
Volume
905
Number
20 December 2023
Pages from-to
art. 167121
Abstract (EN)
In 2018, Europe experienced one of the most severe heatwaves ever recorded. This extreme event's impact on lake surface water temperature (LSWT) in Polish lakes has largely remained unknown. In this study, the impact of the 2018 European heatwave on LSWT in 24 Polish lakes was investigated based on a long-term observed dataset (1987–2020). To capture the LSWT dynamics during the heatwave period and reproduce lake heatwaves, a novel BO-NARX-BR model was developed and evaluated. This model combines the capabilities of the Nonlinear Autoregressive network with Exogenous Inputs (NARX) neural network, the Bayesian Optimization (BO) algorithm for optimizing the number of NARX hidden nodes and lagged input/target values, and the Bayesian Regularization (BR) backpropagation algorithm for the NARX training. The results showed that from April to October 2018, the mean and maximum LSWTs were 2.35 and 3.38 °C warmer than the base-period average (1987–2010) due to the impact of the extreme heatwave. The NARX-based model outperformed another widely used model called air2water in calibration and validation periods. The results also revealed that the BO-NARX-BR model produced significantly better results in capturing lake heatwaves, with computed duration and intensity of lake heatwaves close to the in-situ data. Additionally, LSWT anomaly significantly impacted the duration and intensity of heatwaves that occurred in lakes. Extreme climatic events are gaining increasing importance for the functioning of various elements of the hydrosphere. Such a situation encourages the search for more accurate methods and tools for their prediction. The model applied in the paper corresponds with these assumptions, and its good performance allows for its adaptation to lakes in other regions.
Keywords (EN)
  • heatwave

  • Europe

  • LSWT

  • Polish lakes

  • BO-NARX-BR

  • lake heatwaves

License
closedaccessclosedaccess Closed Access
Fundusze Europejskie
  • About repository
  • Contact
  • Privacy policy
  • Cookies

Copyright 2025 Uniwersytet Przyrodniczy w Poznaniu

DSpace Software provided by PCG Academia