Szanowni Państwo, w związku z bardzo dużą ilością zgłoszeń, rejestracją danych w dwóch systemach bibliograficznych, a jednocześnie zmniejszonym zespołem redakcyjnym proces rejestracji i redakcji opisów publikacji jest wydłużony. Bardzo przepraszamy za wszelkie niedogodności i dziękujemy za Państwa wyrozumiałość.
Repository logoRepository logoRepository logoRepository logo
Repository logoRepository logoRepository logoRepository logo
  • Communities & Collections
  • Research Outputs
  • Employees
  • AAAHigh contrastHigh contrast
    EN PL
    • Log In
      Have you forgotten your password?
AAAHigh contrastHigh contrast
EN PL
  • Log In
    Have you forgotten your password?
  1. Home
  2. Bibliografia UPP
  3. Bibliografia UPP
  4. Ambiguous genes due to aligners and their impact on RNA-seq data analysis
 
Full item page
Options

Ambiguous genes due to aligners and their impact on RNA-seq data analysis

Type
Journal article
Language
English
Date issued
2023
Author
Szabelska-Beręsewicz, Alicja 
Zyprych-Walczak, Joanna Grażyna 
Siatkowski, Idzi 
Okoniewski, Michał
Faculty
Wydział Rolnictwa, Ogrodnictwa i Biotechnologii
PBN discipline
biotechnology
agriculture and horticulture
Journal
Scientific Reports
ISSN
2045-2322
DOI
10.1038/s41598-023-41085-6
Web address
https://www.nature.com/articles/s41598-023-41085-6
Volume
13
Pages from-to
art. 21770
Abstract (EN)
The main scope of the study is ambiguous genes, i.e. genes whose expression is difficult to estimate from the data produced by next-generation sequencing technologies. We focused on the RNA sequencing (RNA-Seq) type of experiment performed on the Illumina platform. It is crucial to identify such genes and understand the cause of their difficulty, as these genes may be involved in some diseases. By giving misleading results, they could contribute to a misunderstanding of the cause of certain diseases, which could lead to inappropriate treatment. We thought that the ambiguous genes would be difficult to map because of their complex structure. So we looked at RNA-seq analysis using different mappers to find genes that would have different measurements from the aligners. We were able to identify such genes using a generalized linear model with two factors: mappers and groups introduced by the experiment. A large proportion of ambiguous genes are pseudogenes. High sequence similarity of pseudogenes to functional genes may indicate problems in alignment procedures. In addition, predictive analysis verified the performance of difficult genes in classification. The effectiveness of classifying samples into specific groups was compared, including the expression of difficult and not difficult genes as covariates. In almost all cases considered, ambiguous genes have less predictive power.
License
cc-bycc-by CC-BY - Attribution
Open access date
December 8, 2023
Fundusze Europejskie
  • About repository
  • Contact
  • Privacy policy
  • Cookies

Copyright 2025 Uniwersytet Przyrodniczy w Poznaniu

DSpace Software provided by PCG Academia