Szanowni Państwo, w związku z bardzo dużą ilością zgłoszeń, rejestracją danych w dwóch systemach bibliograficznych, a jednocześnie zmniejszonym zespołem redakcyjnym proces rejestracji i redakcji opisów publikacji jest wydłużony. Bardzo przepraszamy za wszelkie niedogodności i dziękujemy za Państwa wyrozumiałość.
Repository logoRepository logoRepository logoRepository logo
Repository logoRepository logoRepository logoRepository logo
  • Communities & Collections
  • Research Outputs
  • Employees
  • AAAHigh contrastHigh contrast
    EN PL
    • Log In
      Have you forgotten your password?
AAAHigh contrastHigh contrast
EN PL
  • Log In
    Have you forgotten your password?
  1. Home
  2. Bibliografia UPP
  3. Bibliografia UPP
  4. Real-Time Plant Health Detection Using Deep Convolutional Neural Networks
 
Full item page
Options

Real-Time Plant Health Detection Using Deep Convolutional Neural Networks

Type
Journal article
Language
English
Date issued
2023
Author
Khalid, Mahnoor
Sarfraz, Muhammad
Iqbal, Uzair
Aftab, Muhammad
Niedbała, Gniewko 
Rauf, Hafiz
Faculty
Wydział Inżynierii Środowiska i Inżynierii Mechanicznej
Journal
Agriculture (Switzerland)
ISSN
2077-042
DOI
10.3390/agriculture13020510
Web address
https://www.mdpi.com/2077-0472/13/2/510
Volume
13
Number
2
Pages from-to
art. 510
Abstract (EN)
In the twenty-first century, machine learning is a significant part of daily life for everyone. Today, it is adopted in many different applications, such as object recognition, object classification, and medical purposes. This research aimed to use deep convolutional neural networks for the real-time detection of diseases in plant leaves. Typically, farmers are unaware of diseases on plant leaves and adopt manual disease detection methods. Their production often decreases as the virus spreads. However, due to a lack of essential infrastructure, quick identification needs to be improved in many regions of the world. It is now feasible to diagnose diseases using mobile devices as a result of the increase in mobile phone usage globally and recent advancements in computer vision due to deep learning. To conduct this research, firstly, a dataset was created that contained images of money plant leaves that had been split into two primary categories, specifically (i) healthy and (ii) unhealthy. This research collected thousands of images in a controlled environment and used a public dataset with exact dimensions. The next step was to train a deep model to identify healthy and unhealthy leaves. Our trained YOLOv5 model was applied to determine the spots on the exclusive and public datasets. This research quickly and accurately identified even a small patch of disease with the help of YOLOv5. It captured the entire image in one shot and forecasted adjacent boxes and class certainty. A random dataset image served as the model’s input via a cell phone. This research is beneficial for farmers since it allows them to recognize diseased leaves as soon as they noted and take the necessary precautions to halt the disease’s spread. This research aimed to provide the best hyper-parameters for classifying and detecting the healthy and unhealthy parts of leaves in exclusive and public datasets. Our trained YOLOv5 model achieves 93 % accuracy on a test set
Keywords (EN)
  • plant health detection

  • precision agriculture

  • deep learning

  • object detection

  • YOLOv5

License
cc-bycc-by CC-BY - Attribution
Open access date
February 20, 2023
Fundusze Europejskie
  • About repository
  • Contact
  • Privacy policy
  • Cookies

Copyright 2025 Uniwersytet Przyrodniczy w Poznaniu

DSpace Software provided by PCG Academia