Szanowni Państwo, w związku z bardzo dużą ilością zgłoszeń, rejestracją danych w dwóch systemach bibliograficznych, a jednocześnie zmniejszonym zespołem redakcyjnym proces rejestracji i redakcji opisów publikacji jest wydłużony. Bardzo przepraszamy za wszelkie niedogodności i dziękujemy za Państwa wyrozumiałość.
Repository logoRepository logoRepository logoRepository logo
Repository logoRepository logoRepository logoRepository logo
  • Communities & Collections
  • Research Outputs
  • Employees
  • AAAHigh contrastHigh contrast
    EN PL
    • Log In
      Have you forgotten your password?
AAAHigh contrastHigh contrast
EN PL
  • Log In
    Have you forgotten your password?
  1. Home
  2. Bibliografia UPP
  3. Bibliografia UPP
  4. Assessing the feasibility of using Machine learning algorithms to determine reservoir water quality based on a reduced set of predictors
 
Full item page
Options

Assessing the feasibility of using Machine learning algorithms to determine reservoir water quality based on a reduced set of predictors

Type
Journal article
Language
English
Date issued
2025
Author
Walczak, Natalia 
Walczak, Zbigniew 
Faculty
Wydział Inżynierii Środowiska i Inżynierii Mechanicznej
PBN discipline
environmental engineering, mining and energy
Journal
Ecological Indicators
ISSN
1470-160X
DOI
10.1016/j.ecolind.2025.113556
Web address
https://www.sciencedirect.com/science/article/pii/S1470160X25004868?via%3Dihub
Volume
175
Number
June 2025
Pages from-to
art. 113556
Abstract (EN)
The present study analyses the possibility of assessing water quality using the water quality index (WQI) through the application of four different machine learning algorithms (ML): neural network models (NNM), random forest (RF), k-nearest neighbor (KNN), and linear regression (LR). Water quality was determined based on 5 indicators: P, COD, BOD5, N total, and total suspended solids TS. The possibility of predicting water quality (WQI index) based on the reduced number of predictors was then analyzed. It was estimated which indicators have the most significant impact on WQI values. The performance of models using different algorithms, as well as those trained on full and reduced data sets, was compared. The models demonstrate high performance in WQI prediction, achieving an R2 of 0.999 (for NNM and LR) for the entire dataset, 0.988 (KNN) for the dataset using only three types of predictors, and 0.941 for the dataset using only two predictors (RF). The construction and training of ML models for reduced sets and types of predictors will enable early water quality estimation based on only a few selected parameters. The implementation of ML algorithms will enable more effective water quality management and significantly improve the precision of predictions for critical water parameters.
Keywords (EN)
  • reservoir water quality

  • WQI

  • machine learning ML

  • PCA

License
cc-bycc-by CC-BY - Attribution
Open access date
January 7, 2025
Fundusze Europejskie
  • About repository
  • Contact
  • Privacy policy
  • Cookies

Copyright 2025 Uniwersytet Przyrodniczy w Poznaniu

DSpace Software provided by PCG Academia