Szanowni Państwo, w związku z bardzo dużą ilością zgłoszeń, rejestracją danych w dwóch systemach bibliograficznych, a jednocześnie zmniejszonym zespołem redakcyjnym proces rejestracji i redakcji opisów publikacji jest wydłużony. Bardzo przepraszamy za wszelkie niedogodności i dziękujemy za Państwa wyrozumiałość.
Repository logoRepository logoRepository logoRepository logo
Repository logoRepository logoRepository logoRepository logo
  • Communities & Collections
  • Research Outputs
  • Employees
  • AAAHigh contrastHigh contrast
    EN PL
    • Log In
      Have you forgotten your password?
AAAHigh contrastHigh contrast
EN PL
  • Log In
    Have you forgotten your password?
  1. Home
  2. Bibliografia UPP
  3. Bibliografia UPP
  4. Prediction of Pea (Pisum sativum L.) Seeds Yield Using Artificial Neural Networks
 
Full item page
Options

Prediction of Pea (Pisum sativum L.) Seeds Yield Using Artificial Neural Networks

Type
Journal article
Language
English
Date issued
2023
Author
Hara, Patryk
Piekutowska, Magdalena
Niedbała, Gniewko 
Faculty
Wydział Inżynierii Środowiska i Inżynierii Mechanicznej
Journal
Agriculture (Switzerland)
DOI
10.3390/agriculture13030661
Web address
https://www.mdpi.com/2077-0472/13/3/661
Volume
13
Number
3
Pages from-to
art. 661
Abstract (EN)
A sufficiently early and accurate prediction can help to steer crop yields more consciously, resulting in food security, especially with an expanding world population. Additionally, prediction related to the possibility of reducing agricultural chemistry is very important in an era of climate change. This study analyzes the performance of pea (Pisum sativum L.) seed yield prediction by a linear (MLR) and non-linear (ANN) model. The study used meteorological, agronomic and phytophysical data from 2016–2020. The neural model (N2) generated highly accurate predictions of pea seed yield—the correlation coefficient was 0.936, and the RMS and MAPE errors were 0.443 and 7.976, respectively. The model significantly outperformed the multiple linear regression model (RS2), which had an RMS error of 6.401 and an MAPE error of 148.585. The sensitivity analysis carried out for the neural network showed that the characteristics with the greatest influence on the yield of pea seeds were the date of onset of maturity, the date of harvest, the total amount of rainfall and the mean air temperature.
Keywords (EN)
  • pea

  • seeds yield prediction

  • ANN

  • MLR

  • sensitivity analysis

License
cc-bycc-by CC-BY - Attribution
Open access date
March 12, 2023
Fundusze Europejskie
  • About repository
  • Contact
  • Privacy policy
  • Cookies

Copyright 2025 Uniwersytet Przyrodniczy w Poznaniu

DSpace Software provided by PCG Academia