Szanowni Państwo, w związku z bardzo dużą ilością zgłoszeń, rejestracją danych w dwóch systemach bibliograficznych, a jednocześnie zmniejszonym zespołem redakcyjnym proces rejestracji i redakcji opisów publikacji jest wydłużony. Bardzo przepraszamy za wszelkie niedogodności i dziękujemy za Państwa wyrozumiałość.
Repository logoRepository logoRepository logoRepository logo
Repository logoRepository logoRepository logoRepository logo
  • Communities & Collections
  • Research Outputs
  • Employees
  • AAAHigh contrastHigh contrast
    EN PL
    • Log In
      Have you forgotten your password?
AAAHigh contrastHigh contrast
EN PL
  • Log In
    Have you forgotten your password?
  1. Home
  2. Bibliografia UPP
  3. Bibliografia UPP
  4. Smart Resource Management and Energy-Efficient Regimes for Greenhouse Vegetable Production
 
Full item page
Options

Smart Resource Management and Energy-Efficient Regimes for Greenhouse Vegetable Production

Type
Journal article
Language
English
Date issued
2025
Author
Dudnyk, Alla
Pasichnyk, Natalia
Yakymenko, Inna
Lendiel, Taras
Witaszek, Kamil 
Durczak, Karol 
Czekała, Wojciech 
Faculty
Wydział Inżynierii Środowiska i Inżynierii Mechanicznej
PBN discipline
mechanical engineering
Journal
Energies
ISSN
1996-1073
DOI
10.3390/en18174690
Web address
https://www.mdpi.com/1996-1073/18/17/4690
Volume
18
Number
17
Pages from-to
art. 4690
Abstract (EN)
Greenhouse vegetable production faces significant challenges due to the non-stationary and nonlinear dynamics of the cultivation environment, which demand adaptive and intelligent control strategies. This study presents an intelligent control system for greenhouse complexes based on artificial neural networks and fuzzy logic, optimized using genetic algorithms. The proposed system dynamically adjusts PI controller parameters to maintain optimal microclimatic conditions, including temperature and humidity, enhancing resource efficiency. Comparative analyses demonstrate that the genetic algorithm-based tuning outperforms traditional and fuzzy adaptation methods, achieving superior transient response with reduced overshoot and settling time. Implementation of the intelligent control system results in energy savings of 10–12% compared to conventional stabilization algorithms, while improving decision-making efficiency for electrotechnical subsystems such as heating and ventilation. These findings support the development of resource-efficient cultivation regimes that reduce energy consumption, stabilize agrotechnical parameters, and increase profitability in greenhouse vegetable production. The approach offers a scalable and adaptable solution for modern greenhouse automation under varying environmental conditions.
Keywords (EN)
  • greenhouse automation

  • adaptive control

  • neural networks

  • fuzzy logic

  • genetic algorithm

  • PI controller tuning

  • energy efficiency

  • microclimate regulation

  • resource-efficient production

  • intelligent control systems

License
cc-bycc-by CC-BY - Attribution
Open access date
September 4, 2025
Fundusze Europejskie
  • About repository
  • Contact
  • Privacy policy
  • Cookies

Copyright 2025 Uniwersytet Przyrodniczy w Poznaniu

DSpace Software provided by PCG Academia