Szanowni Państwo, w związku z bardzo dużą ilością zgłoszeń, rejestracją danych w dwóch systemach bibliograficznych, a jednocześnie zmniejszonym zespołem redakcyjnym proces rejestracji i redakcji opisów publikacji jest wydłużony. Bardzo przepraszamy za wszelkie niedogodności i dziękujemy za Państwa wyrozumiałość.
Repository logoRepository logoRepository logoRepository logo
Repository logoRepository logoRepository logoRepository logo
  • Communities & Collections
  • Research Outputs
  • Employees
  • AAAHigh contrastHigh contrast
    EN PL
    • Log In
      Have you forgotten your password?
AAAHigh contrastHigh contrast
EN PL
  • Log In
    Have you forgotten your password?
  1. Home
  2. Bibliografia UPP
  3. Bibliografia UPP
  4. Review of Methods and Models for Potato Yield Prediction
 
Full item page
Options

Review of Methods and Models for Potato Yield Prediction

Type
Journal article
Language
English
Date issued
2025
Author
Piekutowska Magdalena
Niedbała, Gniewko 
Faculty
Wydział Inżynierii Środowiska i Inżynierii Mechanicznej
PBN discipline
mechanical engineering
Journal
Agriculture (Switzerland)
ISSN
2077-0472
DOI
10.3390/agriculture15040367
Web address
https://www.mdpi.com/2077-0472/15/4/367
Volume
15
Number
4
Pages from-to
art. 367
Abstract (EN)
This article provides a comprehensive overview of the development and application of statistical methods, process-based models, machine learning, and deep learning techniques in potato yield forecasting. It emphasizes the importance of integrating diverse data sources, including meteorological, phenotypic, and remote sensing data. Advances in computer technology have enabled the creation of more sophisticated models, such as mixed, geostatistical, and Bayesian models. Special attention is given to deep learning techniques, particularly convolutional neural networks, which significantly enhance forecast accuracy by analyzing complex data patterns. The article also discusses the effectiveness of other algorithms, such as Random Forest and Support Vector Machines, in capturing nonlinear relationships affecting yields. According to standards adopted in agricultural research, the Mean Absolute Percentage Error (MAPE) in the implementation of prediction issues should generally not exceed 15%. Contemporary research indicates that, through the use of advanced and accurate algorithms, the value of this error can reach levels of even less than 10 per cent, significantly increasing the efficiency of yield forecasting. Key challenges in the field include climatic variability and difficulties in obtaining accurate data on soil properties and agronomic practices. Despite these challenges, technological advancements present new opportunities for more accurate forecasting. Future research should focus on leveraging Internet of Things (IoT) technology for real-time data collection and analyzing the impact of biological variables on yield. An interdisciplinary approach, integrating insights from ecology and meteorology, is recommended to develop innovative predictive models. The exploration of machine learning methods has the potential to advance knowledge in potato yield forecasting and support sustainable agricultural practices.
Keywords (PL)
  • ziemniak

  • przewidywanie plonów

  • modele statystyczne

  • modele oparte na procesach

  • uczenie maszynowe

  • głębokie uczenie

  • sieci neuronowe

  • złożoność modelu

  • dokładność predykcyjna

Keywords (EN)
  • potato

  • yield prediction

  • statistical models

  • process-based models

  • machine learning

  • deep learning

  • neural networks

  • model complexity

  • predictive accuracy

License
cc-bycc-by CC-BY - Attribution
Open access date
February 9, 2025
Fundusze Europejskie
  • About repository
  • Contact
  • Privacy policy
  • Cookies

Copyright 2025 Uniwersytet Przyrodniczy w Poznaniu

DSpace Software provided by PCG Academia