Szanowni Państwo, w związku z bardzo dużą ilością zgłoszeń, rejestracją danych w dwóch systemach bibliograficznych, a jednocześnie zmniejszonym zespołem redakcyjnym proces rejestracji i redakcji opisów publikacji jest wydłużony. Bardzo przepraszamy za wszelkie niedogodności i dziękujemy za Państwa wyrozumiałość.
Repository logoRepository logoRepository logoRepository logo
Repository logoRepository logoRepository logoRepository logo
  • Communities & Collections
  • Research Outputs
  • Employees
  • AAAHigh contrastHigh contrast
    EN PL
    • Log In
      Have you forgotten your password?
AAAHigh contrastHigh contrast
EN PL
  • Log In
    Have you forgotten your password?
  1. Home
  2. Bibliografia UPP
  3. Bibliografia UPP
  4. Neural Modelling from the Perspective of Selected Statistical Methods on Examples of Agricultural Applications
 
Full item page
Options

Neural Modelling from the Perspective of Selected Statistical Methods on Examples of Agricultural Applications

Type
Journal article
Language
English
Date issued
2023
Author
Boniecki, Piotr 
Sujak, Agnieszka 
Niedbała, Gniewko 
Piekarska-Boniecka, Hanna 
Wawrzyniak, Agnieszka 
Przybylak, Andrzej Mieczysław 
Faculty
Wydział Inżynierii Środowiska i Inżynierii Mechanicznej
Wydział Rolnictwa, Ogrodnictwa i Biotechnologii
Journal
Agriculture (Switzerland)
ISSN
2077-0472
DOI
10.3390/agriculture13040762
Web address
http://www.mdpi.com/2077-0472/13/4/762
Volume
13
Number
4
Pages from-to
art. 762
Abstract (EN)
Modelling plays an important role in identifying and solving problems that arise in a number of scientific issues including agriculture. Research in the natural environment is often costly, labour demanding, and, in some cases, impossible to carry out. Hence, there is a need to create and use specific “substitutes” for originals, known in a broad sense as models. Owing to the dynamic development of computer techniques, simulation models, in the form of information technology (IT) systems that support cognitive processes (of various types), are acquiring significant importance. Models primarily serve to provide a better understanding of studied empirical systems, and for efficient design of new systems as well as their rapid (and also inexpensive) improvement. Empirical mathematical models that are based on artificial neural networks and mathematical statistical methods have many similarities. In practice, scientific methodologies all use different terminology, which is mainly due to historical factors. Unfortunately, this distorts an overview of their mutual correlations, and therefore, fundamentally hinders an adequate comparative analysis of the methods. Using neural modelling terminology, statisticians are primarily concerned with the process of generalisation that involves analysing previously acquired noisy empirical data. Indeed, the objects of analyses, whether statistical or neural, are generally the results of experiments that, by their nature, are subject to various types of errors, including measurement errors. In this overview, we identify and highlight areas of correlation and interfacing between several selected neural network models and relevant, commonly used statistical methods that are frequently applied in agriculture. Examples are provided on the assessment of the quality of plant and animal production, pest risks, and the quality of agricultural environments.
Keywords (EN)
  • artificial neural networks

  • empirical data analysis

  • statistical methods

  • agriculture

License
cc-bycc-by CC-BY - Attribution
Open access date
March 25, 2023
Fundusze Europejskie
  • About repository
  • Contact
  • Privacy policy
  • Cookies

Copyright 2025 Uniwersytet Przyrodniczy w Poznaniu

DSpace Software provided by PCG Academia