Szanowni Państwo, w związku z bardzo dużą ilością zgłoszeń, rejestracją danych w dwóch systemach bibliograficznych, a jednocześnie zmniejszonym zespołem redakcyjnym proces rejestracji i redakcji opisów publikacji jest wydłużony. Bardzo przepraszamy za wszelkie niedogodności i dziękujemy za Państwa wyrozumiałość.
Repository logoRepository logoRepository logoRepository logo
Repository logoRepository logoRepository logoRepository logo
  • Communities & Collections
  • Research Outputs
  • Employees
  • AAAHigh contrastHigh contrast
    EN PL
    • Log In
      Have you forgotten your password?
AAAHigh contrastHigh contrast
EN PL
  • Log In
    Have you forgotten your password?
  1. Home
  2. Bibliografia UPP
  3. Bibliografia UPP
  4. Field Measurements and Machine Learning Algorithms to Monitor Water Quality in Lakes Located in Landscape Parks – A Case Study
 
Full item page
Options

Field Measurements and Machine Learning Algorithms to Monitor Water Quality in Lakes Located in Landscape Parks – A Case Study

Type
Journal article
Language
English
Date issued
2024
Author
Walczak, Natalia 
Walczak, Zbigniew 
Laks, Ireneusz 
Faculty
Wydział Inżynierii Środowiska i Inżynierii Mechanicznej
Journal
Journal of Ecological Engineering
ISSN
2299-8993
DOI
10.12911/22998993/173191
Web address
https://www.jeeng.net/Field-Measurements-and-Machine-Learning-Algorithms-to-Monitor-Water-Quality-in-Lakes,173191,0,1.html
Volume
25
Number
1
Pages from-to
49-64
Abstract (EN)
One of the biggest threats to many lakes is their accelerated eutrophication resulting from anthropogenic pressure, agricultural intensification, and climate change. A very important element of surface water protection in environmentally conserved areas is the proper monitoring of water quality and detection of potential threats by examining the physicochemical properties of water and performing statistical analyses that enable possible exposure of unfavourable trends. The article presents the analyses of the results of measurements made in three lakes located in the Sierakowski Landscape Park. As part of the measurements, water quality indicators i.e., phosphorus, nitrogen, BOD5 and COD, were determined monthly for a year at the inflows and outflows of the studied lakes. The test results of selected water quality indicators were analysed using machine learning algorithms i.e., PCA and k-means. The conducted tests enabled statistical estimation of changes in water quality indicators in the reservoirs and evaluation of their correlation.
Keywords (EN)
  • quality of water in lakes

  • phosphorus

  • nitrogen

  • BOD5

  • COD

  • PCA

  • k-means

  • ANOVA

  • Kruskal-Wallis test

License
cc-bycc-by CC-BY - Attribution
Open access date
December 4, 2023
Fundusze Europejskie
  • About repository
  • Contact
  • Privacy policy
  • Cookies

Copyright 2025 Uniwersytet Przyrodniczy w Poznaniu

DSpace Software provided by PCG Academia