Activated Carbons Derived from Different Parts of Corn Plant and Their Ability to Remove Phenoxyacetic Herbicides from Polluted Water
Type
Journal article
Language
English
Date issued
2024
Author
Faculty
Wydział Leśny i Technologii Drewna
Journal
Sustainability
ISSN
2071-1050
Web address
Volume
16
Number
17
Pages from-to
art. 7341
Abstract (EN)
In this study, the adsorption of phenoxyacetic acid (PAA) and its chlorinated derivatives, including 4-chlorophenoxyacetic acid (4CPA) and 2,4-dichlorophenoxyacetic acid (2,4-D), on activated carbons (ACs) from corn kernels (AC-K), corn leaves (AC-L), and corn silk (AC-S) were investigated. The adsorption kinetics followed the pseudo-second-order model, and the film diffusion was the rate-limiting step. The adsorption rate increased in the order PAA < 4CPA < 2,4-D and was correlated with the porous structure (mesopore volume) of these ACs. The Langmuir isotherm models best fit the experimental data; PAA was adsorbed least and 2,4-D most preferentially. The observed trend (PAA < 4CPA < 2,4-D) was positively correlated with the molecular weight of the adsorbates and their hydrophobicity while being inversely correlated with their solubility in water. The adsorption for 2,4-D, according to the Langmuir equation, is equal to 2.078, 2.135, and 2.467 mmol/g and SBET 1600, 1720, and 1965 m2/g, respectively. The results for other herbicides showed a similar correlation. The adsorption of phenoxy herbicides was strongly pH-dependent. The ACs produced from corn biomass can be an eco-friendly choice, offering sustainable products that could be used as efficient adsorbents for removing phenoxyacetic herbicides from water.
License
CC-BY - Attribution
Open access date
August 26, 2024