Szanowni Państwo, w związku z bardzo dużą ilością zgłoszeń, rejestracją danych w dwóch systemach bibliograficznych, a jednocześnie zmniejszonym zespołem redakcyjnym proces rejestracji i redakcji opisów publikacji jest wydłużony. Bardzo przepraszamy za wszelkie niedogodności i dziękujemy za Państwa wyrozumiałość.
Repository logoRepository logoRepository logoRepository logo
Repository logoRepository logoRepository logoRepository logo
  • Communities & Collections
  • Research Outputs
  • Employees
  • AAAHigh contrastHigh contrast
    EN PL
    • Log In
      Have you forgotten your password?
AAAHigh contrastHigh contrast
EN PL
  • Log In
    Have you forgotten your password?
  1. Home
  2. Bibliografia UPP
  3. Bibliografia UPP
  4. Neural Modelling in the Study of the Relationship between Herd Structure, Amount of Manure and Slurry Produced, and Location of Herds in Poland
 
Full item page
Options

Neural Modelling in the Study of the Relationship between Herd Structure, Amount of Manure and Slurry Produced, and Location of Herds in Poland

Type
Journal article
Language
English
Date issued
2023
Author
Wawrzyniak, Agnieszka 
Przybylak, Andrzej Mieczysław 
Boniecki, Piotr 
Sujak, Agnieszka 
Zaborowicz, Maciej 
Faculty
Wydział Inżynierii Środowiska i Inżynierii Mechanicznej
Journal
Agriculture (Switzerland)
ISSN
2077-0472
DOI
10.3390/agriculture13071451
Web address
https://www.mdpi.com/2077-0472/13/7/1451
Volume
13
Number
7
Pages from-to
art. 1451
Abstract (EN)
In the presented study, data regarding the size and structure of cattle herds in voivodeships in Poland in 2019 were analysed and modelled using artificial neural networks (ANNs). The neural modelling approach was employed to identify the relationship between herd structure, biogas production from manure and slurry, and the geographical location of herds by voivodeship. The voivodeships were categorised into four groups based on their location within Poland: central, southern, eastern, and western. In each of the analysed groups, a three-layer MLP (multilayer perceptron) with a single hidden layer was found to be the optimal network structure. A sensitivity analysis of the generated models for herd structure and location within the eastern group of voivodeships revealed significant contributions from dairy cows, heifers (both 6–12 and 12–18 months old), calves, and bulls aged 12–24 months. For the western voivodeships, the analysis indicated that only dairy cows and herd location made significant contributions. The optimal models exhibited similar values of RMS errors for the training, testing, and validation datasets. The model characterising biogas production from manure in southern voivodeships demonstrated the smallest RMS error, while the model for biogas from manure in the eastern region, as well as the model for slurry in central parts of Poland, yielded the highest RMS errors. The generated ANN models exhibited a high level of accuracy, with a fitting quality of approximately 99% for correctly predicting values. Comparable results were obtained for both manure and slurry in terms of biogas production across all location groups.
Keywords (EN)
  • manure

  • slurry

  • dairy cow herd

  • artificial neural network

License
cc-bycc-by CC-BY - Attribution
Open access date
July 23, 2023
Fundusze Europejskie
  • About repository
  • Contact
  • Privacy policy
  • Cookies

Copyright 2025 Uniwersytet Przyrodniczy w Poznaniu

DSpace Software provided by PCG Academia