Szanowni Państwo, w związku z bardzo dużą ilością zgłoszeń, rejestracją danych w dwóch systemach bibliograficznych, a jednocześnie zmniejszonym zespołem redakcyjnym proces rejestracji i redakcji opisów publikacji jest wydłużony. Bardzo przepraszamy za wszelkie niedogodności i dziękujemy za Państwa wyrozumiałość.
Repository logoRepository logoRepository logoRepository logo
Repository logoRepository logoRepository logoRepository logo
  • Communities & Collections
  • Research Outputs
  • Employees
  • AAAHigh contrastHigh contrast
    EN PL
    • Log In
      Have you forgotten your password?
AAAHigh contrastHigh contrast
EN PL
  • Log In
    Have you forgotten your password?
  1. Home
  2. Bibliografia UPP
  3. Bibliografia UPP
  4. Modeling Callus Induction and Regeneration in Hypocotyl Explant of Fodder Pea (Pisum sativum var. arvense L.) Using Machine Learning Algorithm Method
 
Full item page
Options

Modeling Callus Induction and Regeneration in Hypocotyl Explant of Fodder Pea (Pisum sativum var. arvense L.) Using Machine Learning Algorithm Method

Type
Journal article
Language
English
Date issued
2023
Author
Türkoğlu, Aras
Bolouri, Parisa
Haliloğlu, Kamil
Eren, Barış
Demirel, Fatih
Işık, Muhammet İslam
Piekutowska, Magdalena
Wojciechowski, Tomasz 
Niedbała, Gniewko 
Faculty
Wydział Inżynierii Środowiska i Inżynierii Mechanicznej
Journal
Agronomy
ISSN
2073-4395
DOI
10.3390/agronomy13112835
Web address
http://www.mdpi.com/2073-4395/13/11/2835
Volume
13
Number
11
Pages from-to
art. 2835
Abstract (EN)
A comprehensive understanding of genetic diversity and the categorization of germplasm is important to effectively identify appropriate parental candidates for the goal of breeding. It is necessary to have a technique of tissue culture that is both effective and reproducible to perform genetic engineering on fodder pea genotypes (Pisum sativum var. arvense L.). In this investigation, the genetic diversity of forty-two fodder pea genotypes was assessed based on their ability of callus induction (CI), the percentage of embryogenic callus by explant number (ECNEP), the percentage of responding embryogenic calluses by explant number (RECNEP), the number of somatic embryogenesis (NSE), the number of responding somatic embryogenesis (RSE), the regeneration efficiency (RE), and the number of regenerated plantlets (NRP). The findings of the ANOVA showed that there were significant differences (p < 0.001) between the genotypes for all in vitro parameters. The method of principal component analysis (PCA) was used to study the correlations that exist between the factors associated with tissue culture. While RE and NRP variables were most strongly associated with Doğruyol, Ovaçevirme-4, Doşeli-1, Yolgeçmez, and Incili-3 genotypes, RECNEP, NSE, RDE, and RECNEP variables were strongly associated with Avcılar, Ovaçevirme-3, and Ardahan Merkez-2 genotypes. The in vitro process is a complex multivariate process and more robust analyses are needed for linear and nonlinear parameters. Within the scope of this study, artificial neural network (ANN), random forest (RF), and multivariate adaptive regression spline (MARS) algorithms were used for RE estimation, and these algorithms were also compared. The results that we acquired from our research led us to the conclusion that the employed ANN-multilayer perceptron (ANN-MLP) model (R2 = 0.941) performs better than the RF model (R2 = 0.754) and the MARS model (R2 = 0.214). Despite this, it has been shown that the RF model is capable of accurately predicting RE in the early stages of the in vitro process. The current work is an inquiry regarding the use of RF, MARS, and ANN models in plant tissue culture, and it indicates the possibilities of application in a variety of economically important fodder peas.
Keywords (EN)
  • cluster analysis

  • genetic diversity

  • selection

  • association

  • prediction

  • artificial intelligence

License
cc-bycc-by CC-BY - Attribution
Open access date
November 17, 2023
Fundusze Europejskie
  • About repository
  • Contact
  • Privacy policy
  • Cookies

Copyright 2025 Uniwersytet Przyrodniczy w Poznaniu

DSpace Software provided by PCG Academia