Exploring the Potential of Fungal Biomass for Bisphenol A Removal in Aquatic Environments
Type
Journal article
Language
English
Date issued
2024
Author
Faculty
Wydział Rolnictwa, Ogrodnictwa i Biotechnologii
PBN discipline
agriculture and horticulture
Journal
International Journal of Molecular Sciences
ISSN
1422-0067
Web address
Volume
25
Number
21
Pages from-to
art. 11388
Abstract (EN)
Bisphenol A is a plastic component, which shows endocrine activity that is detrimental to humans and aquatic ecosystems. The elimination of BPA from the environment is one of the solutions for BPA contaminant management. Adsorption is a cost-effective, easy-to-use method generating low harmful byproducts; nevertheless, contaminant sorbent treatment is a challenge that still needs to be addressed. Fungal fruiting bodies biomass is rarely studied sorbent but is promising due to its high polysaccharide content and availability. Our preliminary studies showed BPA sorption (100 mg/L) by 50 cultivated and wild fungi. The cultivated species: Clitocybe maxima (82%), Pholiota nameko (77%), and Pleurotus columbinus (74%), and wild fungi Cantharellus cibarius (75%) and Lactarius deliciosus (72%) were the most efficient. The biomass was able to sorb BPA over a broad range of temperature and pH levels, with an optimum at 20 °C and pH 7. Although saturation of sorbents was rapid, the regeneration process using ethanol was effective and allowed to recover up to 75% of sorbents’ initial efficiency. A single use of 1 g of sorbent would allow the treatment of 8.86 to 10.1 m3 of wastewater effluent, 16.5 to 18.7 m3 of surface water, and 411 to 469 m3 of drinking water, assuming the concentrations of BPA reported in the literature.
License
CC-BY - Attribution
Open access date
October 23, 2024