Szanowni Państwo, w związku z bardzo dużą ilością zgłoszeń, rejestracją danych w dwóch systemach bibliograficznych, a jednocześnie zmniejszonym zespołem redakcyjnym proces rejestracji i redakcji opisów publikacji jest wydłużony. Bardzo przepraszamy za wszelkie niedogodności i dziękujemy za Państwa wyrozumiałość.
Repository logoRepository logoRepository logoRepository logo
Repository logoRepository logoRepository logoRepository logo
  • Communities & Collections
  • Research Outputs
  • Employees
  • AAAHigh contrastHigh contrast
    EN PL
    • Log In
      Have you forgotten your password?
AAAHigh contrastHigh contrast
EN PL
  • Log In
    Have you forgotten your password?
  1. Home
  2. Bibliografia UPP
  3. Bibliografia UPP
  4. Comparison of Pearson’s and Spearman’s correlation coefficients values for selected traits of Pinus sylvestris L.
 
Full item page
Options

Comparison of Pearson’s and Spearman’s correlation coefficients values for selected traits of Pinus sylvestris L.

Type
Journal article
Language
English
Date issued
2023
Author
Bocianowski, Jan 
Wrońska-Pilarek, Dorota 
Krysztofiak-Kaniewska, Anna 
Matusiak, Karolina
Wiatrowska, Blanka 
Faculty
Wydział Rolnictwa, Ogrodnictwa i Biotechnologii
Wydział Leśny i Technologii Drewna
Journal
Preprints
DOI
10.20944/preprints202312.1604.v1
Web address
http://www.preprints.org/manuscript/202312.1604/v1
Pages from-to
2023121604
Abstract (EN)
The Spearman rank correlation coefficient is a non-parametric (distribution-free) rank statistic proposed by Charles Spearman as a measure of the strength of the relationship between two variables. It is a measure of a monotonic relationship that is used when the distribution of the data makes Pearson's correlation coefficient undesirable or misleading. The Spearman coefficient is not a measure of the linear relationship between two variables. It assesses how well an arbitrary monotonic function can describe the relationship between two variables, without making any assumptions about the frequency distribution of the variables. Unlike Pearson's product-moment (linear) correlation coefficient, it does not require the assumption that the relationship between variables is linear, nor does it require that the variables be measured on interval scales; it can be applied to variables measured at the ordinal level. The purpose of this study is to compare the values of Pearson's product-moment correlation coefficient (treating the data in a quantitative way) and Spearman's rank correlation coefficient (treating the same data in a somewhat "qualitative" way) and their statistical significance for six Pinus sylvestris L. traits (original – for Pearson's coefficient and ranked – for Spearman's coefficient) estimated from all observations, object means (for trees) and medians. The results show that the linear and rank correlation coefficients are consistent (as to direction and strength). In cases of divergence in the direction of correlation, the correlation coefficients were not statistically significant, which does not imply consistency in decision-making. Estimation of correlation coefficients based on medians is robust to outlier observations and factors that linear correlation is then very similar to rank correlation.
Keywords (EN)
  • linear correlation

  • rang correlation

  • scots pine

  • median

License
cc-bycc-by CC-BY - Attribution
Open access date
December 21, 2023
Fundusze Europejskie
  • About repository
  • Contact
  • Privacy policy
  • Cookies

Copyright 2025 Uniwersytet Przyrodniczy w Poznaniu

DSpace Software provided by PCG Academia