Szanowni Państwo, w związku z bardzo dużą ilością zgłoszeń, rejestracją danych w dwóch systemach bibliograficznych, a jednocześnie zmniejszonym zespołem redakcyjnym proces rejestracji i redakcji opisów publikacji jest wydłużony. Bardzo przepraszamy za wszelkie niedogodności i dziękujemy za Państwa wyrozumiałość.
Repository logoRepository logoRepository logoRepository logo
Repository logoRepository logoRepository logoRepository logo
  • Communities & Collections
  • Research Outputs
  • Employees
  • AAAHigh contrastHigh contrast
    EN PL
    • Log In
      Have you forgotten your password?
AAAHigh contrastHigh contrast
EN PL
  • Log In
    Have you forgotten your password?
  1. Home
  2. Bibliografia UPP
  3. Bibliografia UPP
  4. Application of Machine Learning in Horticulture
 
Full item page
Options

Application of Machine Learning in Horticulture

Type
Journal article
Language
English
Date issued
2025
Author
Bocianowski, Jan 
Faculty
Wydział Rolnictwa, Ogrodnictwa i Biotechnologii
Journal
JOJ Horticulture & Arboriculture
ISSN
2641-8215
DOI
10.19080/JOJHA.2025.04.555658
Web address
https://juniperpublishers.com/jojha/volume5-issue2-jojha.php
Volume
5
Number
2
Pages from-to
art. 555658
Abstract (EN)
The development of machine learning (ML) technologies in recent years has opened new opportunities for the horticulture sector, enabling more precise, efficient and sustainable crop management. The aim of this publication is to review the applications of machine learning techniques in horticulture, with particular emphasis on image analysis, decision support systems, yield prediction and resource management. The most commonly used algorithms are described and their potential and challenges related to implementation in the horticultural context are discussed. The work also indicates areas requiring further research that can contribute to increasing productivity and minimizing the impact of agriculture on the environment.
Keywords (EN)
  • machine learning

  • neural networks

  • decision tree algorithms

  • clustering methods

  • image analysis

  • deep dearning algorithms

  • support vector machines

  • optimization

  • regression model

  • robotics

  • precision planting

  • deep yield

License
cc-bycc-by CC-BY - Attribution
Open access date
January 17, 2025
Fundusze Europejskie
  • About repository
  • Contact
  • Privacy policy
  • Cookies

Copyright 2025 Uniwersytet Przyrodniczy w Poznaniu

DSpace Software provided by PCG Academia