Szanowni Państwo, w związku z bardzo dużą ilością zgłoszeń, rejestracją danych w dwóch systemach bibliograficznych, a jednocześnie zmniejszonym zespołem redakcyjnym proces rejestracji i redakcji opisów publikacji jest wydłużony. Bardzo przepraszamy za wszelkie niedogodności i dziękujemy za Państwa wyrozumiałość.
Repository logoRepository logoRepository logoRepository logo
Repository logoRepository logoRepository logoRepository logo
  • Communities & Collections
  • Research Outputs
  • Employees
  • AAAHigh contrastHigh contrast
    EN PL
    • Log In
      Have you forgotten your password?
AAAHigh contrastHigh contrast
EN PL
  • Log In
    Have you forgotten your password?
  1. Home
  2. Bibliografia UPP
  3. Bibliografia UPP
  4. Chemical Speciation of Trace Elements in Soil Fertilized with Biomass Combustion Ash and Their Accumulation in Winter Oilseed Rape Plants
 
Full item page
Options

Chemical Speciation of Trace Elements in Soil Fertilized with Biomass Combustion Ash and Their Accumulation in Winter Oilseed Rape Plants

Type
Journal article
Language
English
Date issued
2023
Author
Szostek, Małgorzata
Szpunar-Krok, Ewa
Ilek, Anna 
Faculty
Wydział Leśny i Technologii Drewna
Journal
Agronomy
ISSN
2073-4395
DOI
10.3390/agronomy13030942
Web address
http://www.mdpi.com/2073-4395/13/3/942
Volume
13
Number
3
Pages from-to
art. 942
Abstract (EN)
The impact of fertilization of fly ashes from biomass combustion (BAs) on the changes in the chemical speciation of trace elements (Zn, Cu, Cr, Ni, Pb, Cd) in Gleyic Chernozem soil was analyzed in field-experiment conditions, under cultivation of winter oilseed rape plants. The three-year field experiment was carried out in southeastern Poland (50°3′ N, 22°47′ E). The three-stage sequential extraction procedure developed by the Measurements and Testing Program (BCR) was used for the fractionation of trace elements in BAs and soil. The risk assessment code (RAC) coefficient was used to assess potential soil contamination with trace elements from Bas. The total content of Zn, Cu, Cr, Ni, Pb, and Cd in BAs used in the experiment was 470, 311, 29, 78, 38, and 3.7 mg kg−1, respectively. The present study showed that the application of BAs significantly increased the total concentration of Zn and Cu in the surface layer of the Gleyic Chernozem soil, and did not significantly increase the concentration of Cr, Ni, Pb, and Cd. Generally, using BAs does not significantly change the chemical speciation of trace elements in soil. Regardless of the applied fertilization, residual fraction (F4) was the most abundant, whereas the exchangeable/extractable (F1) fraction and reducible (F2) fraction were present in the smallest amounts. Due to the low share of exchangeable/extractable fraction (F1), the BAs used in the experiment were characterized by a low RAC coefficient; hence, their use as a soil fertilizer is relatively safe for the environment. The BAs fertilization did not cause significant changes in the content of trace elements in the different parts of the winter oilseed rape plants. Due to the relatively high content of trace elements in fly ashes from biomass combustion, an analysis of the content of individual trace element fractions should be carried out to assess their actual impact on the environment. This can help indicate further actions that should be taken to limit their negative environmental impact.
Keywords (EN)
  • ash management

  • BCR sequential extraction proced...

  • trace element mobility

  • risk assessment code

  • Gleyic Chernozem soil

License
cc-bycc-by CC-BY - Attribution
Open access date
March 22, 2023
Fundusze Europejskie
  • About repository
  • Contact
  • Privacy policy
  • Cookies

Copyright 2025 Uniwersytet Przyrodniczy w Poznaniu

DSpace Software provided by PCG Academia