Szanowni Państwo, w związku z bardzo dużą ilością zgłoszeń, rejestracją danych w dwóch systemach bibliograficznych, a jednocześnie zmniejszonym zespołem redakcyjnym proces rejestracji i redakcji opisów publikacji jest wydłużony. Bardzo przepraszamy za wszelkie niedogodności i dziękujemy za Państwa wyrozumiałość.
Repository logoRepository logoRepository logoRepository logo
Repository logoRepository logoRepository logoRepository logo
  • Communities & Collections
  • Research Outputs
  • Employees
  • AAAHigh contrastHigh contrast
    EN PL
    • Log In
      Have you forgotten your password?
AAAHigh contrastHigh contrast
EN PL
  • Log In
    Have you forgotten your password?
  1. Home
  2. Bibliografia UPP
  3. Bibliografia UPP
  4. Neural Image Analysis for the Determination of Total and Volatile Solids in a Composted Sewage Sludge and Maize Straw Mixture
 
Full item page
Options

Neural Image Analysis for the Determination of Total and Volatile Solids in a Composted Sewage Sludge and Maize Straw Mixture

Type
Journal article
Language
English
Date issued
2023
Author
Kujawa, Sebastian 
Niedbała, Gniewko 
Czekała, Wojciech 
Pentoś, Katarzyna
Faculty
Wydział Inżynierii Środowiska i Inżynierii Mechanicznej
Journal
Applied Sciences (Switzerland)
ISSN
2076-3417
DOI
10.3390/app13053363
Web address
http://www.mdpi.com/2076-3417/13/5/3363
Volume
13
Number
5
Pages from-to
art. 3363
Abstract (EN)
Waste management is one of most important challenges in environmental protection. Much effort is put into the development of waste treatment methods for further use. A serious problem is the treatment of municipal sewage sludge. One method that is useful for this substrate is composting. However, it is reasonable to compost a sewage sludge mixed with other substrates, such as maize straw. To carry out the composting process properly, it is necessary to control some parameters, including the total solids and volatile solids content in the composted mixture. In this paper, a method for the determination of the total solids and volatile solids content based on image analysis and neural networks was proposed. Image analysis was used for the determination of the colour and texture parameters. The three additional features describing the composted material were percentage of sewage sludge, type of maize straw, and stage of compost maturity. The neural models were developed based on various combinations of the input parameters. For both the total solids and volatile solids content, the most accurate models were obtained using all input parameters, including 30 parameters for image colour and texture and three features describing the composted material. The uncertainties of the developed models, expressed by the MAPE error, were 2.88% and 0.59%, respectively, for the prediction of the total solids and volatile solids content.
Keywords (EN)
  • composting

  • sewage sludge

  • maize straw

  • total solids

  • volatile solids

  • neural networks

  • image analysis

License
cc-bycc-by CC-BY - Attribution
Open access date
March 6, 2023
Fundusze Europejskie
  • About repository
  • Contact
  • Privacy policy
  • Cookies

Copyright 2025 Uniwersytet Przyrodniczy w Poznaniu

DSpace Software provided by PCG Academia