Szanowni Państwo, w związku z bardzo dużą ilością zgłoszeń, rejestracją danych w dwóch systemach bibliograficznych, a jednocześnie zmniejszonym zespołem redakcyjnym proces rejestracji i redakcji opisów publikacji jest wydłużony. Bardzo przepraszamy za wszelkie niedogodności i dziękujemy za Państwa wyrozumiałość.
Repository logoRepository logoRepository logoRepository logo
Repository logoRepository logoRepository logoRepository logo
  • Communities & Collections
  • Research Outputs
  • Employees
  • AAAHigh contrastHigh contrast
    EN PL
    • Log In
      Have you forgotten your password?
AAAHigh contrastHigh contrast
EN PL
  • Log In
    Have you forgotten your password?
  1. Home
  2. Bibliografia UPP
  3. Bibliografia UPP
  4. A Framework for Selection of High-Yielding and Drought-tolerant Genotypes of Barley: Applying Yield-Based Indices and Multi-index Selection Models
 
Full item page
Options

A Framework for Selection of High-Yielding and Drought-tolerant Genotypes of Barley: Applying Yield-Based Indices and Multi-index Selection Models

Type
Journal article
Language
English
Date issued
2024
Author
Ghazvini, Habibollah
Pour-Aboughadareh, Alireza
Jasemi, Seyed Shahriyar
Chaichi, Mehrdad
Tajali, Hamid
Bocianowski, Jan 
Faculty
Wydział Rolnictwa, Ogrodnictwa i Biotechnologii
Journal
Journal of Crop Health
ISSN
2948-264X
DOI
10.1007/s10343-024-00981-1
Volume
76
Number
3
Pages from-to
601-606
Abstract (EN)
Drought stress is one of the major environmental stresses that dramatically reduces agricultural production around the world. Barley (Hordeum vulgare L.) plays an important role in both food and feed security. The objective of this study was to identify the superior drought-tolerant genotypes using grain yield and several yield-based indices of tolerance and susceptibility by applying various multivariate selection models. To achieve this objective, a set of promising new barley genotypes was evaluated in three drought-prone regions of Iran (Mashhad, Karaj, and Hamadan) during two consecutive growing seasons (2019–2020 and 2020–2021). The results of additive main effect and multiplicative interaction (AMMI) analysis showed significant effects for genotypes (G), environments (E), and their interaction (G × E). Based on the AMMI model, G3, G7, G9, and G13 were identified as the four highest-ranked genotypes in terms of grain yield. Based on the Smith-Hazel, factor analysis and genotype-ideotype distance index (FAI), and genotype–ideotype distance index (MGIDI) selection models, genotypes G4 and G13 showed the greatest tolerance to drought stress conditions in the three regions. Moreover, the most significant selection gain was found for the stress tolerance index, yield index, and grain yield under drought stress conditions (Ys). The results of the genotype (G) + genotype × environment (GGE) biplot analysis coincided with those obtained, in which the G4 and G13 genotypes showed specific adaptability in drought environments. In addition, among the environments tested, the Karaj region was selected as an ideal target environment with significant discriminatory power and representative ability. In conclusion, the collective analysis using the AMMI, GGE biplot, and multi-index selection models identified genotypes G4 and G13 as superior genotypes. Consequently, these genotypes may be candidates for commercial introduction.

This is a preview of subscription content, log in via a
Keywords (EN)
  • drought stress

  • genotype-by-environment interact...

  • MGIDI

  • correlation

  • selection model

License
closedaccessclosedaccess Closed Access
Fundusze Europejskie
  • About repository
  • Contact
  • Privacy policy
  • Cookies

Copyright 2025 Uniwersytet Przyrodniczy w Poznaniu

DSpace Software provided by PCG Academia