Szanowni Państwo, w związku z bardzo dużą ilością zgłoszeń, rejestracją danych w dwóch systemach bibliograficznych, a jednocześnie zmniejszonym zespołem redakcyjnym proces rejestracji i redakcji opisów publikacji jest wydłużony. Bardzo przepraszamy za wszelkie niedogodności i dziękujemy za Państwa wyrozumiałość.
Repository logoRepository logoRepository logoRepository logo
Repository logoRepository logoRepository logoRepository logo
  • Communities & Collections
  • Research Outputs
  • Employees
  • AAAHigh contrastHigh contrast
    EN PL
    • Log In
      Have you forgotten your password?
AAAHigh contrastHigh contrast
EN PL
  • Log In
    Have you forgotten your password?
  1. Home
  2. Bibliografia UPP
  3. Bibliografia UPP
  4. Data Mining in the Analysis of Tree Harvester Performance Based on Automatically Collected Data
 
Full item page
Options

Data Mining in the Analysis of Tree Harvester Performance Based on Automatically Collected Data

Type
Journal article
Language
English
Date issued
2023
Author
Polowy, Krzysztof 
Molińska-Glura, Marta 
Faculty
Wydział Leśny i Technologii Drewna
Journal
Forests
ISSN
1999-4907
DOI
10.3390/f14010165
Web address
https://www.mdpi.com/1999-4907/14/1/165
Volume
14
Number
1
Pages from-to
art. 165
Abstract (EN)
Data recorded automatically by harvesters are a promising and potentially very useful source of information for scientific analyses. Most researchers have used StanForD files for this purpose, but these are troublesome to obtain and require some pre-processing. This study utilized a new source of similar data: JDLink, a cloud-based service, run by the machine manufacturer, that stores data from sensors in real time. The vast amount of such data makes it hard to comprehend and handle efficiently. Data mining techniques assist in finding trends and patterns in such databases. Records from two mid-sized harvesters working in north-eastern Poland were analyzed using classical regression (linear and logarithmic), cluster analysis (dendrograms and k-means) and Principal Component Analysis (PCA). Linear regression showed that average tree size was the variable having the greatest effect on fuel consumption per cubic meter and productivity, whereas fuel consumption per hour was also dependent, e.g., on distance driven in a low gear or share of time with high engine load. Results of clustering and PCA were harder to interpret. Dendrograms showed most dissimilar variables: total volume harvested per day, total fuel consumption per day and share of work time on high revolutions per minute (RPMs). K-means clustering allowed us to identify periods when specific clusters of variables were more prominent. PCA results, despite explaining almost 90% of variance, were inconclusive between machines, and, therefore, need to be scrutinized in follow-up studies. Productivity values (avg. around 10 m3/h) and fuel consumption rates (13.21 L/h, 1.335 L/m3 on average) were similar to the results reported by other authors under comparable conditions. Some new measures obtained in this study include, e.g., distance driven in a low gear (around 7 km per day) or proportion of time when the engine was running on low, medium or high load (34%, 39% and 7%, respectively). The assumption of this study was to use data without supplementing from external sources, and with as little processing as possible, which limited the analytic methods to unsupervised learning. Extending the database in follow-up studies will facilitate the application of supervised learning techniques for modeling and prediction.
Keywords (EN)
  • big data

  • machine learning

  • cluster analysis

  • dendrograms

  • k-means

  • principal component analysis

  • harvester data

License
cc-bycc-by CC-BY - Attribution
Open access date
January 16, 2023
Fundusze Europejskie
  • About repository
  • Contact
  • Privacy policy
  • Cookies

Copyright 2025 Uniwersytet Przyrodniczy w Poznaniu

DSpace Software provided by PCG Academia