Szanowni Państwo, w związku z bardzo dużą ilością zgłoszeń, rejestracją danych w dwóch systemach bibliograficznych, a jednocześnie zmniejszonym zespołem redakcyjnym proces rejestracji i redakcji opisów publikacji jest wydłużony. Bardzo przepraszamy za wszelkie niedogodności i dziękujemy za Państwa wyrozumiałość.
Repository logoRepository logoRepository logoRepository logo
Repository logoRepository logoRepository logoRepository logo
  • Communities & Collections
  • Research Outputs
  • Employees
  • AAAHigh contrastHigh contrast
    EN PL
    • Log In
      Have you forgotten your password?
AAAHigh contrastHigh contrast
EN PL
  • Log In
    Have you forgotten your password?
  1. Home
  2. Bibliografia UPP
  3. Bibliografia UPP
  4. Insights into Drought Tolerance of Tetraploid Wheat Genotypes in the Germination Stage Using Machine Learning Algorithms
 
Full item page
Options

Insights into Drought Tolerance of Tetraploid Wheat Genotypes in the Germination Stage Using Machine Learning Algorithms

Type
Journal article
Language
English
Date issued
2024
Author
Benlioğlu, Berk
Demirel, Fatih
Türkoğlu, Aras
Haliloğlu, Kamil
Özaktan, Hamdi
Kujawa, Sebastian 
Piekutowska, Magdalena
Wojciechowski, Tomasz 
Niedbała, Gniewko 
Faculty
Wydział Inżynierii Środowiska i Inżynierii Mechanicznej
Journal
Agriculture (Switzerland)
ISSN
2077-0472
DOI
10.3390/agriculture14020206
Web address
https://www.mdpi.com/2077-0472/14/2/206
Volume
14
Number
2
Pages from-to
art. 206
Abstract (EN)
Throughout germination, which represents the initial and crucial phase of the wheat life cycle, the plant is notably susceptible to the adverse effects of drought. The identification and selection of genotypes exhibiting heightened drought tolerance stand as pivotal strategies aimed at mitigating these effects. For the stated objective, this study sought to evaluate the responses of distinct wheat genotypes to diverse levels of drought stress encountered during the germination stage. The induction of drought stress was achieved using polyethylene glycol at varying concentrations, and the assessment was conducted through the application of multivariate analysis and machine learning algorithms. Statistical significance (p < 0.01) was observed in the differences among genotypes, stress levels, and their interaction. The ranking of genotypes based on tolerance indicators was evident through a principal component analysis and biplot graphs utilizing germination traits and stress tolerance indices. The drought responses of wheat genotypes were modeled using germination data. Predictions were then generated using four distinct machine learning techniques. An evaluation based on R-square, mean square error, and mean absolute deviation metrics indicated the superior performance of the elastic-net model in estimating germination speed, germination power, and water absorption capacity. Additionally, in assessing the criterion metrics, it was determined that the Gaussian processes classifier exhibited a better performance in estimating root length, while the extreme gradient boosting model demonstrated superior performance in estimating shoot length, fresh weight, and dry weight. The study’s findings underscore that drought tolerance, susceptibility levels, and parameter estimation for durum wheat and similar plants can be reliably and efficiently determined through the applied methods and analyses, offering a fast and cost-effective approach.
Keywords (EN)
  • tetraploid wheat

  • drought stress

  • germination

  • stress tolerance

  • modeling

License
cc-bycc-by CC-BY - Attribution
Open access date
January 27, 2024
Fundusze Europejskie
  • About repository
  • Contact
  • Privacy policy
  • Cookies

Copyright 2025 Uniwersytet Przyrodniczy w Poznaniu

DSpace Software provided by PCG Academia