Repository logoRepository logoRepository logoRepository logo
Repository logoRepository logoRepository logoRepository logo
  • Communities & Collections
  • Research Outputs
  • Employees
  • AAAHigh contrastHigh contrast
    EN PL
    • Log In
      Have you forgotten your password?
AAAHigh contrastHigh contrast
EN PL
  • Log In
    Have you forgotten your password?
  1. Home
  2. Bibliografia UPP
  3. Bibliografia UPP
  4. Prediction of Protein Content in Pea (Pisum sativum L.) Seeds Using Artificial Neural Networks
 
Full item page
Options

Prediction of Protein Content in Pea (Pisum sativum L.) Seeds Using Artificial Neural Networks

Type
Journal article
Language
English
Date issued
2023
Author
Hara, Patryk
Piekutowska, Magdalena
Niedbała, Gniewko 
Faculty
Wydział Inżynierii Środowiska i Inżynierii Mechanicznej
Journal
Agriculture (Switzerland)
ISSN
2077-0472
DOI
10.3390/agriculture13010029
Web address
https://www.mdpi.com/2077-0472/13/1/29
Volume
13
Number
1
Pages from-to
art. 29
Abstract (EN)
Pea (Pisum sativum L.) is a legume valued mainly for its high seed protein content. The protein content of pea is characterized by a high lysine content and low allergenicity. This has made consumers appreciate peas increasingly in recent years, not only for their taste, but also for their nutritional value. An important element of pea cultivation is the ability to predict protein content, even before harvest. The aim of this research was to develop a linear and a non-linear model for predicting the percentage of protein content in pea seeds and to perform a comparative analysis of the effectiveness of these models. The analysis also focused on identifying the variables with the greatest impact on protein content. The research included the method of machine learning (artificial neural networks) and multiple linear regression (MLR). The input parameters of the models were weather, agronomic and phytophenological data from 2016–2020. The predictive properties of the models were verified using six ex-post forecast measures. The neural model (N1) outperformed the multiple regression (RS) model. The N1 model had an RMS error magnitude of 0.838, while the RS model obtained an average error value of 2.696. The MAPE error for the N1 and RS models was 2.721 and 8.852, respectively. The sensitivity analysis performed for the best neural network showed that the independent variables most influencing the protein content of pea seeds were the soil abundance of magnesium, potassium and phosphorus. The results presented in this work can be useful for the study of pea crop management. In addition, they can help preserve the country’s protein security.
Keywords (EN)
  • artificial neural networks

  • multiple linear regression

  • protein prediction

  • pea

  • sensitivity analysis

  • weather conditions

License
cc-bycc-by CC-BY - Attribution
Open access date
December 22, 2022
Fundusze Europejskie
  • About repository
  • Contact
  • Privacy policy
  • Cookies

Copyright 2025 Uniwersytet Przyrodniczy w Poznaniu

DSpace Software provided by PCG Academia