Szanowni PaƄstwo, w związku z bardzo duĆŒÄ… iloƛcią zgƂoszeƄ, rejestracją danych w dwĂłch systemach bibliograficznych, a jednoczeƛnie zmniejszonym zespoƂem redakcyjnym proces rejestracji i redakcji opisĂłw publikacji jest wydƂuĆŒony. Bardzo przepraszamy za wszelkie niedogodnoƛci i dziękujemy za PaƄstwa wyrozumiaƂoƛć.
Repository logoRepository logoRepository logoRepository logo
Repository logoRepository logoRepository logoRepository logo
  • Communities & Collections
  • Research Outputs
  • Employees
  • AAAHigh contrastHigh contrast
    EN PL
    • Log In
      Have you forgotten your password?
AAAHigh contrastHigh contrast
EN PL
  • Log In
    Have you forgotten your password?
  1. Home
  2. Bibliografia UPP
  3. Bibliografia UPP
  4. Dataset for unrevealing the application of multi-trait genotype-ideotype distance index and multi-trait index based on factor analysis and ideotype-design models in the identification of high-yielding and stable barley genotypes
 
Full item page
Options

Dataset for unrevealing the application of multi-trait genotype-ideotype distance index and multi-trait index based on factor analysis and ideotype-design models in the identification of high-yielding and stable barley genotypes

Type
Journal article
Language
English
Date issued
2025
Author
Pour-Aboughadareh, Alireza
Jadidi, Omid
Jamshidi, Bita
Bocianowski, Jan 
Niemann, Janetta 
Faculty
WydziaƂ Rolnictwa, Ogrodnictwa i Biotechnologii
Journal
Data in Brief
ISSN
2352-3409
DOI
10.1016/j.dib.2025.111383
Web address
https://www.sciencedirect.com/science/article/pii/S2352340925001155
Volume
59
Pages from-to
art. 111383
Abstract (EN)
Dissecting the genotype-by-environment interaction (GEI) effects in multi-environmental trials (METs) is a critical step in any breeding program before introducing new commercial varieties for cultivation in specific regions or across diverse environments. This dataset explores the application of two novel selection models: the multi-trait genotype-ideotype distance index (MGIDI) and the multi-trait index based on factor analysis and ideotype-design (FAI-BLUP). These models incorporate comprehensive stability parameters to identify high-yielding and stable barley genotypes across varying environmental conditions. In both models, the first three factors (FAs) with eigenvalues greater than 1 accounted for 92.3% of the total variation. The BLUP-based parameters, along with grain yield (GY) and the mean variance component (Ɵ), showed a positive selection deferential (SD) and correlated with the second factor (FA2). Notably, these models identified G3, G10, and G14 as the most stable genotypes. In conclusion, this dataset underscores the utility of comprehensive stability parameters and advanced selection models in identifying high-yielding, stable genotypes within the framework of METs.
Keywords (EN)
  • Genotype-by-environment interact...

  • Grain yield

  • Stability parameters

  • AMMI model

  • BLUP model

License
cc-bycc-by CC-BY - Attribution
Open access date
February 11, 2025
Fundusze Europejskie
  • About repository
  • Contact
  • Privacy policy
  • Cookies

Copyright 2025 Uniwersytet Przyrodniczy w Poznaniu

DSpace Software provided by PCG Academia