Szanowni Państwo, w związku z bardzo dużą ilością zgłoszeń, rejestracją danych w dwóch systemach bibliograficznych, a jednocześnie zmniejszonym zespołem redakcyjnym proces rejestracji i redakcji opisów publikacji jest wydłużony. Bardzo przepraszamy za wszelkie niedogodności i dziękujemy za Państwa wyrozumiałość.
Repository logoRepository logoRepository logoRepository logo
Repository logoRepository logoRepository logoRepository logo
  • Communities & Collections
  • Research Outputs
  • Employees
  • AAAHigh contrastHigh contrast
    EN PL
    • Log In
      Have you forgotten your password?
AAAHigh contrastHigh contrast
EN PL
  • Log In
    Have you forgotten your password?
  1. Home
  2. Bibliografia UPP
  3. Bibliografia UPP
  4. Opportunities for the Transformation and Development of Power Plants Under Water Stress Conditions: Example of Adamów Power Plant
 
Full item page
Options

Opportunities for the Transformation and Development of Power Plants Under Water Stress Conditions: Example of Adamów Power Plant

Type
Journal article
Language
English
Date issued
2024
Author
Kałuża, Tomasz 
Kanclerz, Jolanta 
Hammerling, Mateusz 
Janicka-Kubiak, Ewelina
Zaborowski, Stanisław 
Faculty
Wydział Inżynierii Środowiska i Inżynierii Mechanicznej
PBN discipline
environmental engineering, mining and energy
Journal
Energies
ISSN
1996-1073
DOI
10.3390/en17246267
Web address
https://www.mdpi.com/1996-1073/17/24/6267
Volume
17
Number
24
Pages from-to
art. 6267
Abstract (EN)
In the vicinity of the Adamów power plant, which operates in the catchment area of the Kiełbaska river, there is a significant shortage of water resources caused by the intensive use of water by the energy industry and agriculture. The development of the plant by replacing the outdated coal-fired (lignite-fired) units with modern gas and steam units may contribute significantly to reducing the negative impact on the environment and reduce the demand for water resources relative to coal technology. Gas and steam units are a much more energy-efficient technology. This implies a lower demand for water, a reduction in pollutant emissions, and greater operational flexibility, which enables the units to adapt to changing hydrological and environmental conditions. The high efficiency of these units limits the need for frequent water-refilling, while allowing for a more sustainable and stable production of energy. Based on an analysis of hydrological data for the years 2019–2023, it was estimated that water stress is observed in this catchment area on 198 days per year, which accounts for c.a. 54% of the hydrological year. Therefore, it is assumed that inter-catchment pumping stations with a flow of 0.347 m3∙s−1 will be required. This sets the demand for water at 5.95 million m3 per year. The planned water transfer will be carried out from Jeziorsko reservoir on the Warta river through the catchment area of Teleszyna river. Moreover, there are plans for the reconstruction of the layout of Kiełbaska Duża and Teleszyna rivers, which would involve the restoration of natural run-offs, following the discontinuation of open-pit lignite mining. This will additionally be supported by the reduced demand for water in the water use system when using the modernised power plant. The analysed data made it possible to develop hydrological scenarios that take the future reduction in water stress into account by implementing plans to restore the former hydrographic system in the region. These investments would also foresee the creation of new retention reservoirs (in former mining pits) with a capacity of nearly 900 million m3, which will significantly increase the region’s water resources and retention potential, supporting hydrological and energy security for the years to come.
Keywords (EN)
  • "gas-steam power plant

  • energy transition

  • transformation of power plants

  • water resources

  • water stress"

License
cc-bycc-by CC-BY - Attribution
Open access date
December 12, 2024
Fundusze Europejskie
  • About repository
  • Contact
  • Privacy policy
  • Cookies

Copyright 2025 Uniwersytet Przyrodniczy w Poznaniu

DSpace Software provided by PCG Academia