Repository logoRepository logoRepository logoRepository logo
Repository logoRepository logoRepository logoRepository logo
  • Communities & Collections
  • Research Outputs
  • Employees
  • AAAHigh contrastHigh contrast
    EN PL
    • Log In
      Have you forgotten your password?
AAAHigh contrastHigh contrast
EN PL
  • Log In
    Have you forgotten your password?
  1. Home
  2. Bibliografia UPP
  3. Bibliografia UPP
  4. Application of Artificial Neural Networks Sensitivity Analysis for the Pre-Identification of Highly Significant Factors Influencing the Yield and Digestibility of Grassland Sward in the Climatic Conditions of Central Poland
 
Full item page
Options

Application of Artificial Neural Networks Sensitivity Analysis for the Pre-Identification of Highly Significant Factors Influencing the Yield and Digestibility of Grassland Sward in the Climatic Conditions of Central Poland

Type
Journal article
Language
English
Date issued
2022
Author
Niedbała, Gniewko 
Wróbel, Barbara
Piekutowska, Magdalena
Zielewicz, Waldemar 
Paszkiewicz-Jasińska, Anna
Wojciechowski, Tomasz 
Niazian, Mohsen
Faculty
Wydział Inżynierii Środowiska i Inżynierii Mechanicznej
Wydział Rolnictwa, Ogrodnictwa i Bioinżynierii
Journal
Agronomy
ISSN
2073-4395
DOI
10.3390/agronomy12051133
Web address
https://www.mdpi.com/2073-4395/12/5/1133
Volume
12
Number
5
Pages from-to
art. 1133
Abstract (EN)
Progressive climate changes are the most important challenges for modern agriculture. Permanent grassland represents around 70% of all agricultural land. In comparison with other agroecosystems, grasslands are more sensitive to climate change. The aim of this study was to create deterministic models based on artificial neural networks to identify highly significant factors influencing the yield and digestibility of grassland sward in the climatic conditions of central Poland. The models were based on data from a grassland experiment conducted between 2014 and 2016. Phytophenological data (harvest date and botanical composition of sward) and meteorological data (average temperatures, total rainfall, and total effective temperatures) were used as independent variables, whereas qualitative and quantitative parameters of the feed made from the grassland sward (dry matter digestibility, dry matter yield, and protein yield) were used as dependent variables. Nine deterministic models were proposed Y_G, DIG_G, P_G, Y_GB, DIG_GB, P_GB, Y_GC, DIG_GC, and P_GC, which differed in the input variable and the main factor from the grassland experiment. The analysis of the sensitivity of the neural networks in the models enabled the identification of the independent variables with the greatest influence on the yield of dry matter and protein as well as the digestibility of the dry matter of the first regrowth of grassland sward, taking its diverse botanical composition into account. The results showed that the following factors were the most significant (rank 1): the average daily air temperature, total rainfall, and the percentage of legume plants. This research will be continued on a larger group of factors influencing the output variables and it will involve an attempt to optimise these factors.
Keywords (EN)
  • sensitivity analysis

  • deterministic modeling

  • artificial neural networks

  • meadow sward

  • botanical composition of sward

  • air temperature

  • precipitation

License
cc-bycc-by CC-BY - Attribution
Open access date
May 8, 2022
Fundusze Europejskie
  • About repository
  • Contact
  • Privacy policy
  • Cookies

Copyright 2025 Uniwersytet Przyrodniczy w Poznaniu

DSpace Software provided by PCG Academia