Szanowni Państwo, w związku z bardzo dużą ilością zgłoszeń, rejestracją danych w dwóch systemach bibliograficznych, a jednocześnie zmniejszonym zespołem redakcyjnym proces rejestracji i redakcji opisów publikacji jest wydłużony. Bardzo przepraszamy za wszelkie niedogodności i dziękujemy za Państwa wyrozumiałość.
Repository logoRepository logoRepository logoRepository logo
Repository logoRepository logoRepository logoRepository logo
  • Communities & Collections
  • Research Outputs
  • Employees
  • AAAHigh contrastHigh contrast
    EN PL
    • Log In
      Have you forgotten your password?
AAAHigh contrastHigh contrast
EN PL
  • Log In
    Have you forgotten your password?
  1. Home
  2. Bibliografia UPP
  3. Bibliografia UPP
  4. The interactive effect of high temperature and water deficit stress on nitrogen fixation, photosynthesis, chlorophyll fluorescence, seed yield and quality in soybean (Glycine max)
 
Full item page
Options

The interactive effect of high temperature and water deficit stress on nitrogen fixation, photosynthesis, chlorophyll fluorescence, seed yield and quality in soybean (Glycine max)

Type
Journal article
Language
English
Date issued
2024
Author
Jumrani, Kanchan
Bhatia, Virender Singh
Kataria, Sunita
Rastogi, Anshu 
Faculty
Wydział Inżynierii Środowiska i Inżynierii Mechanicznej
Journal
Plant Physiology Reports
ISSN
2662-253X
DOI
10.1007/s40502-023-00763-3
Volume
29
Number
1
Pages from-to
125-140
Abstract (EN)
Drought and heat stress are important abiotic stresses restricting plant growth, while the two stresses often occur at the same time in nature, little is known about when these stresses occur in combination. Therefore, attempts were made to understand the impact of water stress imposed under different temperature conditions on various physiological parameters such as nitrogen fixation, photosynthesis, chlorophyll fluorescence, seed yield and quality. Cultivar JS 97–52 was grown in pots under polyhouses maintained at day/night temperatures of 30/22, 34/24, 38/26 and 42/28 °C. At each temperature, pots were divided into two sets, one set was unstressed while second was subjected to water stress at reproductive stage (beginning of seed fill). An increase in temperature and water stress caused the reduction in CO2 exchange, which ultimately affected the nitrogen fixation. Nitrogenase activity was significantly declined in the nodules with an increase in temperature. There was a concomitant decline in leghemoglobin, heme-chrome and ureids content in the nodules which ultimately resulted in the reduction of nitrate reductase activity, chlorophyll content and total free amino acid under high temperatures. A decline in nitrogen and carbon fixation ultimately caused a reduction in seed yield and quality. Water stress when imposed at different temperature further aggravated the effects of temperature, and the combination of water stress and high temperature had more detrimental effect. Thus, understanding the mechanisms by which plants acclimate to water deficit combined with high temperature is crucial for identifying stress tolerant soybean cultivars and to pave the way for obtaining cultivars with higher productivity under combined stress conditions.
Keywords (EN)
  • drought

  • high temperature

  • nitrogen fixation

  • photosynthesis

  • soybean

License
closedaccessclosedaccess Closed Access
Fundusze Europejskie
  • About repository
  • Contact
  • Privacy policy
  • Cookies

Copyright 2025 Uniwersytet Przyrodniczy w Poznaniu

DSpace Software provided by PCG Academia