Modeling Callus Induction and Regeneration in Hypocotyl Explant of Fodder Pea (Pisum sativum var. arvense L.) Using Machine Learning Algorithm Method
2023, Türkoğlu, Aras, Bolouri, Parisa, Haliloğlu, Kamil, Eren, Barış, Demirel, Fatih, Işık, Muhammet İslam, Piekutowska, Magdalena, Wojciechowski, Tomasz, Niedbała, Gniewko
A comprehensive understanding of genetic diversity and the categorization of germplasm is important to effectively identify appropriate parental candidates for the goal of breeding. It is necessary to have a technique of tissue culture that is both effective and reproducible to perform genetic engineering on fodder pea genotypes (Pisum sativum var. arvense L.). In this investigation, the genetic diversity of forty-two fodder pea genotypes was assessed based on their ability of callus induction (CI), the percentage of embryogenic callus by explant number (ECNEP), the percentage of responding embryogenic calluses by explant number (RECNEP), the number of somatic embryogenesis (NSE), the number of responding somatic embryogenesis (RSE), the regeneration efficiency (RE), and the number of regenerated plantlets (NRP). The findings of the ANOVA showed that there were significant differences (p < 0.001) between the genotypes for all in vitro parameters. The method of principal component analysis (PCA) was used to study the correlations that exist between the factors associated with tissue culture. While RE and NRP variables were most strongly associated with Doğruyol, Ovaçevirme-4, Doşeli-1, Yolgeçmez, and Incili-3 genotypes, RECNEP, NSE, RDE, and RECNEP variables were strongly associated with Avcılar, Ovaçevirme-3, and Ardahan Merkez-2 genotypes. The in vitro process is a complex multivariate process and more robust analyses are needed for linear and nonlinear parameters. Within the scope of this study, artificial neural network (ANN), random forest (RF), and multivariate adaptive regression spline (MARS) algorithms were used for RE estimation, and these algorithms were also compared. The results that we acquired from our research led us to the conclusion that the employed ANN-multilayer perceptron (ANN-MLP) model (R2 = 0.941) performs better than the RF model (R2 = 0.754) and the MARS model (R2 = 0.214). Despite this, it has been shown that the RF model is capable of accurately predicting RE in the early stages of the in vitro process. The current work is an inquiry regarding the use of RF, MARS, and ANN models in plant tissue culture, and it indicates the possibilities of application in a variety of economically important fodder peas.
Predicting Starch Content in Early Potato Varieties Using Neural Networks and Regression Models: A Comparative Study
2024, Piekutowska, Magdalena, Hara, Patryk, Pentoś, Katarzyna, Lenartowicz, Tomasz, Wojciechowski, Tomasz, Kujawa, Sebastian, Niedbała, Gniewko
Starch content serves as a crucial indicator of the quality and palatability of potato tubers. It has become a common practice to evaluate the polysaccharide content directly in tubers freshly harvested from the field. This study aims to develop models that can predict starch content prior to the harvesting of potato tubers. Very early potato varieties were cultivated in the northern and northwestern regions of Poland. The research involved constructing multiple linear regression (MLR) and artificial neural network (ANN-MLP) models, drawing on data from eight years of field trials. The independent variables included factors such as sunshine duration, average daily air temperatures, precipitation, soil nutrient levels, and phytophenological data. The NSM demonstrated a higher accuracy in predicting the dependent variable compared to the RSM, with MAPE errors of 7.258% and 9.825%, respectively. This study confirms that artificial neural networks are an effective tool for predicting starch content in very early potato varieties, making them valuable for monitoring potato quality.