Environmental Restoration and Changes of Sediment and Hydrodynamic Parameters in a Section of a Renaturalised Lowland Watercourse
2024, Zaborowski, Stanisław, Kałuża, Tomasz, Jusik, Szymon, Dysarz, Tomasz, Hammerling, Mateusz
In Europe, the routes of most watercourses were straightened and shortened, leading to the destruction and degradation of many natural environments. Currently, in places where it is possible, as part of the implementation of the Water Framework Directive, efforts are made to improve environmental sustainability, including improving the ecological condition of rivers. This paper presents the impact of three in-stream deflectors on changes in the section of a small lowland river—the Flinta (Poland)—where (from 2018 to 2023) detailed, systematic geodetic, and hydrometric research and an assessment of the ecological conditions were carried out. The presented results show the influence of deflectors on the initiation of fluvial processes in the transverse and longitudinal layouts of the channel. The river channel was narrowed from 6 to 5 m, and the current line shifted by almost 3 m. Changes were observed in the distribution of velocities and shear stresses, varying along the surveyed section of the river. In the first year after their application, an increase in velocity at the deflectors can be observed (from 0.2 m∙s−1 to 0.6 m∙s−1 in the deflector cross-section). In the following years, on the other hand, a clear decrease in velocity was observed in the sections between the deflectors (to 0.3 m∙s−1). The introduction of deflectors resulted in a significant increase in the values of shear stresses (from an average value of 0.0241 N∙m−2 in 2018 to 0.2761 N∙m−2 in 2023) and local roughness coefficients (from 0.045 s∙m−1/3 before the introduction of the deflectors to 0.070 s∙m−1/3 in 2023). Based on analyses of sediment samples, erosion and accumulation of bottom material were initially observed, followed by a subsequent stabilisation of particle size. Differences in grain size were observed, especially in the cross-section of the deflectors (increase in granularity d50% downstream of the deflector from 0.31 mm to 3.9 mm already 2 years after the introduction of deflectors). This study confirmed the positive impact of using deflectors on hydromorphological processes as deflectors facilitate the achievement of a good ecological status, as required by the WFD. The innovation of this paper lies in demonstrating the possibility of using small, simple structures to initiate and intensify fluvial processes, which may contribute to improving the ecological conditions of watercourses.
Ocena jakościowych i ilościowych zmian mikrobiomu bakteryjnego w procesie beztlenowego rozkładu materii organicznej
2024, Pilarska, Agnieszka, Wolna-Maruwka, Agnieszka, Kubiak, Adrianna, Niewiadomska, Alicja, Hammerling, Mateusz, Pilarski, Krzysztof, Danielewska, Alicja, Kalbarczyk, Kinga
The concept for innovative Comprehensive Assessment of Lowland Rivers
2023, Kocięcka, Joanna, Kupiec, Jerzy Mirosław, Hammerling, Mateusz, Liberacki, Daniel
Current river assessment methods focus on evaluating a single aspect (e.g. the physical and chemical quality of the water or its hydromorphological state) and usually do not integrate various factors. The lack of an interdisciplinary method makes it difficult to correctly assess the condition of a river as a complex ecosystem significantly influenced by humans. This study aimed to develop a novel Comprehensive Assessment of Lowland Rivers (CALR) method. It is designed to integrate and evaluate all-natural and anthropopressure-related elements that influence a river. The CALR method was developed using the Analytic Hierarchy Process (AHP). The application of the AHP allowed the assessment factors to be determined and given weights to define the importance of each assessment element. As a result of AHP analyses, the following ranks were determined for the six main parts of the CALR method: hydrodynamic assessment (0.212), hydromorphological assessment (0.194), macrophyte assessment (0.192), water quality assessment (0.171), hydrological assessment (0.152) hydrotechnical structures assessment (0.081). In the comprehensive assessment of lowland rivers, each of the six elements listed above is rated on a scale of 1–5 (where 5 means very good and 1 bad) and multiplied by an appropriate weighting. After summing up the obtained results, a final value is obtained, classifying the river. CALR can be successfully applied to all lowland rivers thanks to its relatively simple methodology. The widespread use of the CALR method may facilitate the assessment process and enable the comparison of the condition of lowland rivers worldwide. The research conducted in this article is one of the first attempts to develop a comprehensive method for evaluating rivers that considers all aspects.
The Use of a Multi-Criteria Decision Analysis Method to Select the Most Favourable Type of Fish Pass in Mountainous Areas
2024, Hammerling, Mateusz, Kałuża, Tomasz, Tymiński, Tomasz, Plesiński, Karol
Fish passes are a key element enabling the migration of aquatic organisms in the context of restrictions resulting from the presence of weirs. Multi-criteria decision analysis, AHP, and Rembrandt methods were used to assess the effectiveness of fish passes on mountain rivers. Three common types of fish passes were considered: slotted fish pass, block ramps, and a circulation channel with boulders. The results of the study indicated that block ramps proved to be the most favourable solution, achieving the highest preference values in both methods (Rembrandt: 0.77, AHP: 0.63). The key factors influencing the effectiveness of the fish passes are the availability of space and the water requirements, which reached values of 0.38 and 0.27 in the Rembrandt method and 0.33 and 0.28 in the AHP method, respectively. The differences between the results of both methods were minimal and did not have a significant impact on the final choice. The discussion emphasised the advantage of nature-like fish passes, such as block ramps, which better preserve the ecological continuity of rivers and can be more easily adapted to local hydrological conditions. The study also indicated the need for continuous monitoring of the fish passes and their optimisation to reduce problems related to sedimentation and flow blocking. The obtained results can provide a valuable basis for decision making in the planning and construction of fish passes, especially in demanding mountainous conditions, contributing to improving the effectiveness of fish migration and minimising negative impacts on the natural environment.
Beaver Dams as a Significant Factor in Shaping the Hydromorphological and Hydrological Conditions of Small Lowland Streams
2025, Kałuża, Tomasz, Hammerling, Mateusz, Zaborowski, Stanisław, Pawlak, Maciej
Beavers play a key role in creating temporary water reservoirs that significantly impact the natural environment and local river hydrology. The primary aim of this study was to assess the potential of increasing the number of beaver dams (Castor spp.), as an alternative method of water retention in the environment. Research conducted on three small lowland streams in central Poland revealed that beaver dams, even in modified riverbeds, enable the formation of shallow floodplains and ponds. Innovative analyses considered the structural materials of the dams and their impact on river hydromorphology and sediment transport. The findings emphasise the importance of beavers in water retention processes, the stabilisation of water levels during low flows and the protection of biodiversity. The study also demonstrated that beaver dams play a critical role in storing surface- and groundwater, mitigating drought impacts, reducing surface runoff, and stabilising river flows. These constructions influence local hydrology by increasing soil moisture, extending water retention times, and creating habitats for numerous species. The collected data highlight the potential of beaver dams as a tool in water resource management in the context of climate change. Further research could provide guidance for the sustainable utilisation of beavers in environmental conservation strategies and landscape planning.
Hydrological Effects of the Planned Power Project and Protection of the Natura 2000 Areas: A Case Study of the Adamów Power Plant.
2025, Kałuża, Tomasz, Laks, Ireneusz, Kanclerz, Jolanta, Janicka-Kubiak, Ewelina, Hammerling, Mateusz, Zaborowski, Stanisław
The planned construction of a steam–gas unit at the Adamów Power Plant raises questions about the potential hydrological impact on the neighboring Natura 2000 protected areas, particularly the Middle Warta Valley (PLB300002) and the Jeziorsko Reservoir (PLB100002). These ecosystems play a key role in protecting bird habitats and biodiversity, and any changes in water management can affect their condition. This paper presents a detailed hydrological analysis of the Warta River and Jeziorsko Reservoir for 2018–2022, with a focus on low-flow periods. The Peak Over Threshold (POT) method and Q70% threshold were used to identify the frequency, length, and seasonality of low-flow periods in three water gauge profiles: Uniejów, Koło, and Sławsk. The longest recorded low-flow episode lasted 167 days. The permissible water intake for the investment (up to 0.8 m3∙s–1) is in accordance with the applicable permits and is used mainly for cooling purposes. Calculations indicate that under maximum intake conditions, the water level reduction in the Jeziorsko Reservoir would be between 1.7 and 2.0 mm∙day–1, depending on the current level of filling. Such changes do not disrupt the natural functions of the reservoir under typical conditions, although during prolonged droughts, they can pose a threat to protected areas. An analysis of the impact of periodic water overflow into the Kiełbaska Duża River indicates its negligible effect on water levels in the reservoir and flows in the Warta River. The results underscore the need for the integrated management of water and power resources, considering the increasing variability in hydrological conditions. Ensuring a balance between industrial needs and environmental protection is key to minimizing the potential impact of investments and implementing sustainable development principles.
Analysis of the Influence of Hydraulic and Hydrological Factors on the Operating Conditions of a Small Hydropower Station on the Example of the Stary Młyn Barrage on the Głomia River in Poland
2023, Hammerling, Mateusz, Walczak, Natalia, Kałuża, Tomasz
The operation of water structures causes various problems. They are related, for example, to the material carried by the water, hydrological conditions, range of operation of hydroelectric turbines, or water elevations at the lower position of the hydroelectric power plant. Among the various operational problems, this article focuses mainly on the impact of the backwater of Gwda river on the water level elevations at the lower station of the Stary Młyn hydropower plant in Dobrzyca. The power plant is located on Głomia river. The analysis was carried out for different flow variants in both the Gwda and Głomia rivers. The effect of characteristic flows on the water surface level at the lower station of the hydropower plant was examined. It was found that the water surface level at the lower station of the hydropower plant is strongly influenced by flows higher than the average high flow on Gwda river. Due to the extent of the backwater in current operating conditions, the hydroelectric power plant is shut down from flows on Gwda river of 30–28 m3/s (flows that are not much higher than the multi-year average SSQ). The modeling results were confirmed by an analysis of power plant shutdowns of normal operation especially in wet years, when the plant did not operate for almost half of the year (188 days), with losses of 203 MWh. It was also shown that even a small additional damming of water, e.g., of the order of 0.2 m, can extend the operating time of a power plant up to 249 days even under unfavorable hydrological conditions. Factors related to climate change are beginning to play an increasingly important role in the current operating conditions of small lowland hydroelectric power plants. They can contribute to a reduction in electricity production. The proposed solution related to the possibility of greater water retention on dammed-up water barrages allows one to partially offset these problems as well.
Opportunities for the Transformation and Development of Power Plants Under Water Stress Conditions: Example of Adamów Power Plant
2024, Kałuża, Tomasz, Kanclerz, Jolanta, Hammerling, Mateusz, Janicka-Kubiak, Ewelina, Zaborowski, Stanisław
In the vicinity of the Adamów power plant, which operates in the catchment area of the Kiełbaska river, there is a significant shortage of water resources caused by the intensive use of water by the energy industry and agriculture. The development of the plant by replacing the outdated coal-fired (lignite-fired) units with modern gas and steam units may contribute significantly to reducing the negative impact on the environment and reduce the demand for water resources relative to coal technology. Gas and steam units are a much more energy-efficient technology. This implies a lower demand for water, a reduction in pollutant emissions, and greater operational flexibility, which enables the units to adapt to changing hydrological and environmental conditions. The high efficiency of these units limits the need for frequent water-refilling, while allowing for a more sustainable and stable production of energy. Based on an analysis of hydrological data for the years 2019–2023, it was estimated that water stress is observed in this catchment area on 198 days per year, which accounts for c.a. 54% of the hydrological year. Therefore, it is assumed that inter-catchment pumping stations with a flow of 0.347 m3∙s−1 will be required. This sets the demand for water at 5.95 million m3 per year. The planned water transfer will be carried out from Jeziorsko reservoir on the Warta river through the catchment area of Teleszyna river. Moreover, there are plans for the reconstruction of the layout of Kiełbaska Duża and Teleszyna rivers, which would involve the restoration of natural run-offs, following the discontinuation of open-pit lignite mining. This will additionally be supported by the reduced demand for water in the water use system when using the modernised power plant. The analysed data made it possible to develop hydrological scenarios that take the future reduction in water stress into account by implementing plans to restore the former hydrographic system in the region. These investments would also foresee the creation of new retention reservoirs (in former mining pits) with a capacity of nearly 900 million m3, which will significantly increase the region’s water resources and retention potential, supporting hydrological and energy security for the years to come.