Now showing 1 - 8 of 8
No Thumbnail Available
Publication

Quantifying Genetic Parameters for Blackleg Resistance in Rapeseed: A Comparative Study

2024, Bocianowski, Jan, Starosta, Ewa, Jamruszka, Tomasz, Szwarc, Justyna, Jędryczka, MaƂgorzata, Grynia, Magdalena, Niemann, Janetta

Selection is a fundamental part of the plant breeding process, enabling the identification and development of varieties with desirable traits. Thanks to advances in genetics and biotechnology, the selection process has become more precise and efficient, resulting in faster breeding progress and better adaptation of crops to environmental challenges. Genetic parameters related to gene additivity and epistasis play a key role and can influence decisions on the suitability of breeding material. In this study, 188 rapeseed doubled haploid lines were assessed in field conditions for resistance to Leptosphaeria spp. Through next-generation sequencing, a total of 133,764 molecular markers (96,121 SilicoDArT and 37,643 SNP) were obtained. The similarity of the DH lines at the phenotypic and genetic levels was calculated. The results indicate that the similarity at the phenotypic level was markedly different from the similarity at the genetic level. Genetic parameters related to additive gene action effects and epistasis (double and triple) were calculated using two methods: based on phenotypic observations only and using molecular marker observations. All evaluated genetic parameters (additive, additive-additive and additive-additive-additive) were statistically significant for both estimation methods. The parameters associated with the interaction (double and triple) had opposite signs depending on the estimation method.

No Thumbnail Available
Publication

Brassica napus haploid and double haploid production and its latest applications

2023, Starosta, Ewa, Szwarc, Justyna, Niemann, Janetta, Szewczyk, Katarzyna (rol.), Weigt, Dorota

Rapeseed is one of the most important oil crops in the world. Increasing demand for oil and limited agronomic capabilities of present-day rapeseed result in the need for rapid development of new, superior cultivars. Double haploid (DH) technology is a fast and convenient approach in plant breeding as well as genetic research. Brassica napus is considered a model species for DH production based on microspore embryogenesis; however, the molecular mechanisms underlying microspore reprogramming are still vague. It is known that morphological changes are accompanied by gene and protein expression patterns, alongside carbohydrate and lipid metabolism. Novel, more efficient methods for DH rapeseed production have been reported. This review covers new findings and advances in Brassica napus DH production as well as the latest reports related to agronomically important traits in molecular studies employing the double haploid rapeseed lines.

No Thumbnail Available
Publication

Comparison of Six Measures of Genetic Similarity of Interspecific Brassicaceae Hybrids F2 Generation and Their Parental Forms Estimated on the Basis of ISSR Markers

2024, Bocianowski, Jan, Niemann, Janetta, Jagieniak, Anna, Szwarc, Justyna

Genetic similarity determines the extent to which two genotypes share common genetic material. It can be measured in various ways, such as by comparing DNA sequences, proteins, or other genetic markers. The significance of genetic similarity is multifaceted and encompasses various fields, including evolutionary biology, medicine, forensic science, animal and plant breeding, and anthropology. Genetic similarity is an important concept with wide application across different scientific disciplines. The research material included 21 rapeseed genotypes (ten interspecific Brassicaceae hybrids of F2 generation and 11 of their parental forms) and 146 alleles obtained using 21 ISSR molecular markers. In the presented study, six measures for calculating genetic similarity were compared: Euclidean, Jaccard, KulczyƄski, Sokal and Michener, Nei, and Rogers. Genetic similarity values were estimated between all pairs of examined genotypes using the six measures proposed above. For each genetic similarity measure, the average, minimum, maximum values, and coefficient of variation were calculated. Correlation coefficients between the genetic similarity values obtained from each measure were determined. The obtained genetic similarity coefficients were used for the hierarchical clustering of objects using the unweighted pair group method with an arithmetic mean. A multiple regression model was written for each method, where the independent variables were the remaining methods. For each model, the coefficient of multiple determination was calculated. Genetic similarity values ranged from 0.486 to 0.993 (for the Euclidean method), from 0.157 to 0.986 (for the Jaccard method), from 0.275 to 0.993 (for the KulczyƄski method), from 0.272 to 0.993 (for the Nei method), from 0.801 to 1.000 (for the Rogers method) and from 0.486 to 0.993 (for the Sokal and Michener method). The results indicate that the research material was divided into two identical groups using any of the proposed methods despite differences in the values of genetic similarity coefficients. Two of the presented measures of genetic similarity (the Sokal and Michener method and the Euclidean method) were the same.

No Thumbnail Available
Publication

Improving the Selection Efficiency of Breeding Material within Interspecific Brassicaceae Hybrids with Genomic Prediction and Phenotyping

2023, Szwarc, Justyna, Niemann, Janetta, Bocianowski, Jan, Kaczmarek, Joanna, Doğu, Mehmet Zafer, Nowicka, Alicja

Various molecular markers can be applied to accelerate the breeding process of Brassicaceae plants. The aim of the present study was to assess the usefulness of available markers connected to blackleg resistance and to screen for markers linked to genes influencing major morphological characteristics, suitable for the further selection of Brassicaceae hybrids. Combining the field and molecular results allowed for the selection of useful SSR markers, including mstg004 and mstg027 markers connected to the color of the flowers and marker mstg038 associated with stem color. The field trails were also conducted to investigate the level of blackleg resistance, which permitted the selection of rapeseed hybrids with B. fruticulosa, B. carinata, and S. alba exhibiting the lowest infestation. Furthermore, the functionality of some of the resistance-linked markers was confirmed. The importance of interspecific hybridization and the use of marker-assisted selection are discussed, and the high utility of presented markers in further studies is highlighted.

No Thumbnail Available
Publication

Novel Brassica hybrids with different resistance to Leptosphaeria maculans reveal unbalanced rDNA signal patterns

2022, Szwarc, Justyna, Niemann, Janetta, Kaczmarek, Joanna, Majka, Joanna, Bocianowski, Jan

AbstractHybridization ofBrassica napuswith various Brassicaceae species can result in obtaining new forms with increased resistance to blackleg, a dangerous disease caused mainly byLeptosphaeria maculans. In this study, we aimed to correlate the field resistance of selectedBrassicahybrids to blackleg with chromosomal structure revealed by Fluorescencein situhybridization. Tested genotypes varied in the number of chromosomes and rDNA signals. The greatest variation was observed for A1-type chromosomes. Field evaluation also revealed significant differences inL. maculansresistance. Performed analyses allowed to distinguish threeB. napus×Brassica fruticulosagenotypes in which variable patterns of chromosomal structure might be connected to field resistance. However, a more thorough study, including the detection of all A-genome chromosomes, is required.

No Thumbnail Available
Publication

Marker assisted selection in Brassica napus breeding for stem canker (Leptosphaeria ssp.) resistance.

2022, Niemann, Janetta, Szwarc, Justyna, Starosta, Ewa, Irzykowski, Witold, Kaczmarek, Joanna, Jędryczka, MaƂgorzata

No Thumbnail Available
Publication

Genetic Relationship of Brassicaceae Hybrids with Various Resistance to Blackleg Is Disclosed by the Use of Molecular Markers

2022, Szwarc, Justyna, Niemann, Janetta, Kaczmarek, Joanna, Bocianowski, Jan, Weigt, Dorota

Brassica napus is an important oil source. Its narrow gene pool can be widened by interspecific hybridization with the Brassicaceae species. One of the agronomically important traits, that can be transferred through the hybridization, is the resistance to blackleg, a dangerous disease mainly caused by Leptosphaeria maculans. Hybrid individuals can be analyzed with various molecular markers, including Simple Sequence Repeats (SSR). We investigated the genetic similarity of 32 Brassicaceae hybrids and 19 parental components using SSR markers to reveal their genetic relationship. Furthermore, we compared the field resistance to blackleg of the interspecific progenies. The tested set of 15 SSR markers proved to be useful in revealing the genetic distances in the Brassicaceae hybrids and species. However, genetic similarity of the studied hybrids could not be correlated with the level of field resistance to L. maculans. Moreover, our studies confirmed the usefulness of the Brassicaceae hybrids in terms of blackleg management.

No Thumbnail Available
Publication

DArTseq-Based, High-Throughput Identification of Novel Molecular Markers for the Detection of Blackleg (Leptosphaeria Spp.) Resistance in Rapeseed

2024, Starosta, Ewa, Jamruszka, Tomasz, Szwarc, Justyna, Bocianowski, Jan, Jędryczka, MaƂgorzata, Grynia, Magdalena, Niemann, Janetta

Blackleg disease, caused by Leptosphaeria spp. fungi, is one of the most important diseases of Brassica napus, responsible for severe yield losses worldwide. Blackleg resistance is controlled by major R genes and minor quantitative trait loci (QTL). Due to the high adaptation ability of the pathogen, R-mediated resistance can be easily broken, while the resistance mediated via QTL is believed to be more durable. Thus, the identification of novel molecular markers linked to blackleg resistance for B. napus breeding programs is essential. In this study, 183 doubled haploid (DH) rapeseed lines were assessed in field conditions for resistance to Leptosphaeria spp. Subsequently, DArTseq-based Genome-Wide Association Study (GWAS) was performed to identify molecular markers linked to blackleg resistance. A total of 133,764 markers (96,121 SilicoDArT and 37,643 SNP) were obtained. Finally, nine SilicoDArT and six SNP molecular markers were associated with plant resistance to Leptosphaeria spp. at the highest significance level, p < 0.001. Importantly, eleven of these fifteen markers were found within ten genes located on chromosomes A06, A07, A08, C02, C03, C06 and C08. Given the immune-related functions of the orthologues of these genes in Arabidopsis thaliana, the identified markers hold great promise for application in rapeseed breeding programs.