Now showing 1 - 20 of 28
No Thumbnail Available
Publication

The energy efficiency analysis of sorghum waste biomass grown in a temperate climate

2025, Czekała, Wojciech, Frankowski, Jakub, Sieracka, Dominika, Pochwatka, Patrycja, Kowalczyk-Juśko, Alina, Witaszek, Kamil, Dudnyk, Alla, Zielińska, Aleksandra, Wisła-Świder, Anna, Dach, Jacek

No Thumbnail Available
Publication

Thematic study of the BIOEAST thematic working group on bioenergy and new value added: Anaerobic digestion for renewable energy, carbon sink and organic fertilizers as an integral part of bioeconomy development

2022, Dach, Jacek, Siebielec, Grzegorz, Mazurkiewicz, Jakub, Pochwatka, Patrycja

No Thumbnail Available
Patent

Sposób zwiększenia sprawności energetycznej biogazowni oraz układ do zwiększenia sprawności energetycznej biogazowni

2019, JACEK DACH, ANDRZEJ LEWICKI, DAMIAN JANCZAK, WOJCIECH CZEKAŁA, MIROSŁAW MICHALAK

No Thumbnail Available
Publication

Ukraine’s biogas potential: a comprehensive assessment of energy yields and of feedstock availability

2025, Vaskina, Iryna, Pochwatka, Patrycja, Vaskin, Roman, Adamski, Mariusz, Nowak, Mateusz, Dach, Jacek

No Thumbnail Available
Patent

Bioreaktor ze złożem ruchomym, zwłaszcza do rekultywacji silnie zanieczyszczonych akwakultur i małych zbiorników wodnych

2021, JAKUB MAZURKIEWICZ, SEBASTIAN KUJAWIAK, JACEK DACH, Robert Mazur

No Thumbnail Available
Publication

Evaluation of tree leaf properties for potential biogas production

2025, Janczak, Damian, Lucejko, Jeannette Jacqueline, Zborowska, Magdalena, Francesconi, Sandro, Krupka, Michał, Pochwatka, Patrycja, Gikas, Petros, Czekała, Wojciech, Qiao, Wei, Dach, Jacek

No Thumbnail Available
Publication

Current State of Development of Demand-Driven Biogas Plants in Poland

2025, Łukomska, Aleksandra, Witaszek, Kamil, Dach, Jacek

Renewable energy sources (RES) are the foundation of the ongoing energy transition in Poland and worldwide. However, increased use of RES has brought several challenges, as most of these sources are dependent on weather conditions. The instability and lack of control over electricity production lead to both overloads and power shortages in transmission and distribution networks. A significant advantage of biogas plants over sources such as photovoltaics or wind turbines is their ability to control electricity generation and align it with actual demand. Biogas produced during fermentation can be temporarily stored in a biogas tank above the digester and later used in an enlarged CHP unit to generate electricity and heat during peak demand periods. While demand-driven biogas plants operate similarly to traditional installations, their development requires navigating regulatory and administrative procedures, particularly those related to the grid connection of the generated electricity. In Poland, it has only recently become possible to obtain grid connection conditions for such installations, following the adoption of the Act of 28 July 2023, which amended the Energy Law and certain other acts. However, the biogas sector still faces challenges, particularly the need for effective incentive mechanisms and the removal of regulatory and economic barriers, especially given its estimated potential of up to 7.4 GW.

No Thumbnail Available
Publication

Leverage of Essential Oils on Faeces-Based Methane and Biogas Production in Dairy Cows

2023, Mazurkiewicz, Jakub, Sidoruk, Pola, Dach, Jacek, Szumacher, Małgorzata, Lechniak, Dorota, Galama, Paul, Kuipers, Abele, Antkowiak, Ireneusz Ryszard, Cieślak, Adam

Currently, there is an ongoing intensive search for solutions that would effectively reduce greenhouse gas emissions (mainly methane) into the environment. From a practical point of view, it is important to reduce methane emissions from cows in such a way as to simultaneously trim emissions from the digestive system and increase its potential production from feces, which is intended as a substrate used in biogas plants. Such a solution would not only lower animal-based methane emissions but would also enable the production of fuel (in chemical form) with a high yield of methane from biogas, which would boost the economic benefits and reduce the use of fossil fuels. We tested the effect of administering an essential oil blend consisting of 5.5% oils and fats on methane and biogas production from dairy cow feces during fermentation. Three subsequent series (control and experimental) were conducted in dairy cows fed a total mixed ration (TMR) rich in brewer’s cereals and beet pulp, with 20% dry matter (DM) of the total diet. Cows from the experimental group received 20 g/cow/day of essential oil blend, namely a commercial additive (CA). The study showed that CA can increase the production of methane and biogas from dairy cow feces. It can be concluded that in the experimental groups, approx. 15.2% and 14.4% on a fresh matter basis and 11.7% and 10.9% on a dry matter basis more methane and biogas were generated compared to the control group, respectively. Therefore, it can be assumed that the use of CA in cow nutrition improved dietary digestibility, which increased the efficiency of the use of feces organic matter for biogas production.

No Thumbnail Available
Publication

Reduction of Greenhouse Gas Emissions by Replacing Fertilizers with Digestate

2023, Kowalczyk-Juśko, Alina, Pochwatka, Patrycja, Mazurkiewicz, Jakub, Pulka, Jakub, Kępowicz, Barbara, Janczak, Damian, Dach, Jacek

No Thumbnail Available
Publication

The Effect of Corn Ensiling Methods on Digestibility and Biogas Yield

2025, Kupryaniuk, Karol, Witaszek, Kamil, Vaskina, Iryna, Filipek-Kaźmierczak, Sebastian, Kupryaniuk, Jakub, Sołowiej, Piotr, Dach, Jacek

This study investigates the impact of different corn silage preparation methods, namely the traditional and Shredlage methods, on digestibility and biogas yield in anaerobic digestion and its nutritional value—the first complex study of its kind. Key parameters of both silage types were analyzed, including chemical composition, fiber content, and elemental makeup. Methane and biogas production were assessed under standardized fermentation conditions. The results showed that the Shredlage method, characterized by more intensive chopping, led to higher biogas and methane yields per unit of organic dry matter compared to traditional silage. This improvement is attributed to enhanced digestibility due to the lower content of neutral detergent fiber (NDF), acid detergent fiber (ADF), and crude fiber in Shredlage. An elemental analysis revealed slight differences in carbon-to-nitrogen (C/N) ratios, with both silages showing values suitable for efficient fermentation. Despite minor variations in mineral content, Shredlage demonstrated greater efficiency in biogas production, particularly for rapid fermentation processes. The findings underscore the importance of silage preparation techniques in optimizing biogas yield and suggest Shredlage as a superior option for enhancing energy recovery in biogas plants. Future work should explore the economic trade-offs and scalability of these methods.

No Thumbnail Available
Publication

The Influence of Temperature on Rheological Parameters and Energy Efficiency of Digestate in a Fermenter of an Agricultural Biogas Plant

2024, Gruszczyński, Maciej Filip, Kałuża, Tomasz, Czekała, Wojciech, Zawadzki, Paweł, Mazurkiewicz, Jakub, Matz, Radosław, Pawlak, Maciej, Jarzembowski, Paweł, Nezhad, Farokh Sahraei, Dach, Jacek

This investigation specifically aims to enhance the understanding of digestate flow and mixing behavior across typical temperatures in bioreactors in agricultural biogas plants, facilitating energy-efficient mixing. Experimental tests confirmed that digestate exhibits non-Newtonian characteristics, allowing its flow behavior to be captured by rheological models. This study validated that digestate rheology significantly varies with temperature, which influences flow resistance, mixing efficiency and overall energy requirements. Two rheological models—the Bingham and Ostwald models—were applied to characterize digestate behavior, with the Ostwald model emerging as the most effective for Computational Fluid Dynamic (CFD) simulations, given its balance between predictive accuracy and computational efficiency. Specifically, results suggest that, while three-parameter models, like the Herschel–Bulkley model, offer high precision, their computational intensity is less suitable for large-scale modeling where efficiency is paramount. The small increase in the accuracy of the shearing process description does not compensate for the significant increase in CFD calculation time. Higher temperatures were found to reduce flow resistance, which in turn enables increased flow rates and more extensive mixing zones. This enhanced mass transfer and mixing potential at elevated temperatures are especially pronounced in peripheral areas of the bioreactor, farthest from the agitators. By contributing a model for rheological behavior under realistic bioreactor conditions, this study supports the optimization of energy use in biogas production. These findings emphasize that temperature adjustments within bioreactors could serve as a reliable control strategy to maintain optimal production conditions while minimizing operational costs.

No Thumbnail Available
Publication

Research on a New Method of Water Recovery from Biogas Plant Digestate

2024, Nowak, Mateusz, Czekała, Wojciech, Bojarski, Wiktor, Dach, Jacek

Digestate is a product with valuable fertilizing properties, remaining after the anaerobic fermentation process. An essential feature of the substance in question is its high water content of up to 97%. To improve the fertilizer value of the digestate, it is necessary to dehydrate it to produce a concentrated product. This paper determined the possibility of dewatering the digestate using an innovative reactor design. The study, conducted on a laboratory scale, used digestate from a Polish biogas plant. The dewatering technique described in the paper is based on the evaporation and condensation of water vapor on the inner surface of the reactor dome. The condensate accumulated on the leach trough and was directed to a storage tank. During the weeks of testing, 11.5 kg of condensate was separated from the initial weight of the digestate (32 kg), with a dry weight of 6.11%. The resulting condensate from dehydration had an average pH value of 9.0 and an average ammonium nitrogen content of 2.07 g∙kg−1. The economic calculations made in the paper allowed for estimating the expected savings associated with the management of digestate in Poland. The research showed the proposed technology’s high potential for dewatering digestate under laboratory conditions.

No Thumbnail Available
Publication

Waste-to-energy: Biogas potential of waste from coffee production and consumption

2023, Czekała, Wojciech, Łukomska, Aleksandra, Pulka, Jakub, Bojarski, Wiktor, Pochwatka, Patrycja, Kowalczyk-Juśko, Alina, Oniszczuk, Anna, Dach, Jacek

No Thumbnail Available
Publication

Additives Improving the Efficiency of Biogas Production as an Alternative Energy Source—A Review

2024, Pilarska, Agnieszka A., Pilarski, Krzysztof, Kulupa, Tomasz, Kubiak, Adrianna, Wolna-Maruwka, Agnieszka, Niewiadomska, Alicja, Dach, Jacek

Additives for anaerobic digestion (AD) can play a significant role in optimising the process by increasing biogas production, stabilising the system and improving digestate quality. The role of additives largely boils down to: (i) enhancing direct interspecies electron transfer (DIET) between microbial communities, resulting in improved syntrophic interactions and methane production rates (e.g. biochar, magnetite and carbon nanotubes), (ii) adsorption of toxic substances that may inhibit microbial activity (e.g. activated carbon, zeolites), (iii) improving microbial activity and increasing process stability (e.g. cobalt, nickel, iron, selenium), (iv) maintaining optimal pH levels for microbial activity (e.g. magnesium oxide), (v) reducing inhibition (the aforementioned adsorbents and conductive substances), (vi) accelerating the decomposition of complex organic materials into simpler compounds that are more easily digested by microorganisms, thereby increasing the rate of hydrolysis (enzymes, including cellulases, proteases and lipases). Through the aforementioned action, additives can significantly affect AD performance. The function of these materials varies, from enhancing microbial activity to maintaining optimal conditions and protecting the system from inhibitors. The choice of additives should be carefully tailored to the specific needs and conditions of the digester to maximise benefits and ensure sustainability. In light of these considerations, this paper characterizes the most commonly used additives and their combinations based on a comprehensive review of recent scientific publications, including a report on the results of conducted studies. The publication features chapters that describe: carbon-based conductive materials, metal oxide nanomaterials, trace metal and biological additives, including enzymes and microorganisms. It concludes with a chapter summarising reports on various additives and discussing their indications for functional systems with determined properties. A notable advantage of this work is the updated literature data, clear summaries, and a substantive description of the performance of the additives discussed.

No Thumbnail Available
Publication

Profitability of the agricultural biogas plants operation in Poland, depending on the substrate use model

2023, Czekała, Wojciech, Jasiński, Tomasz, Dach, Jacek

No Thumbnail Available
Patent

Kompozycja szczepów grzybów i sposób utylizacji odpadów ściekowych

2021, Joanna Stefania Kruszewska, Urszula Perlińska-Lenart, SEBASTIAN PIŁSYK, MARCIN GRYNBERG, JACEK DACH

No Thumbnail Available
Publication

The energetic and economic analysis of demand-driven biogas plant investment possibility in dairy farm

2023, Pochwatka, Patrycja, Rozakis, Stelios, Kowalczyk-Juśko, Alina, Czekała, Wojciech, Qiao, Wei, Nägele, Hans-Joachim, Janczak, Damian, Mazurkiewicz, Jakub, Mazur, Andrzej, Dach, Jacek

No Thumbnail Available
Publication

Production of compost from logging residues

2023, Bojarski, Wiktor, Czekała, Wojciech, Nowak, Mateusz, Dach, Jacek

No Thumbnail Available
Publication

Fundamentals, Operation and Global Prospects for the Development of Biogas Plants-A Review

2024, Gadirli, Gulnar, Pilarska, Agnieszka, Dach, Jacek, Pilarski, Krzysztof, Kolasa-Więcek, Alicja, Borowiak, Klaudia

As the global demand for renewable energy continues to rise, biogas production has emerged as a promising solution for sustainable energy generation. This review article presents the advantages of biogas technologies (mainly agricultural, based on waste of animal and plant origin) and extensively discusses the main principles of biogas production in the anaerobic digestion (AD). In this respect, the main parameters of the process, which require monitoring and decisive for its efficiency are described, therefore: temperature, pH value, retention time and organic loading rate (OLR). The principles of substrate selection are also discussed and the necessity and advantages of the use of organic waste according to the model of a circular economy and the concept of sustainable development, are indicated. It is emphasized that according to the new European regulations, the crops classified as food cannot be considered energy crops. The part on biogas production is summarised with an explanation of the necessity to treat and purify biogas. Biogas purification is important from the point of view of the efficiency of its conversion into electricity. A special place in this paper is devoted to the design, construction, functioning and operation of biogas plants, based on both scientific and practical aspects. In conclusion of this chapter, the economic aspects and profitability of operating biogas plants are discussed. Cost and benefit analyses are the major tool used for the systematic evaluation of the financial costs and potential benefits associated with the operation of biogas plants. The important fact is that the return on investment can be achieved within a few years, provided the activities are well-planned and executed. In addition to the fundamental issues of the operation of biogas plants, this article presents the global situation regarding the development of biogas plants, discussing in detail the specific needs and limitations on different continents. It is a interesting and extensive part of this article. The global agricultural biogas market is at very different levels of development. Most such installations are located in Asia and Europe. China has the highest number of biogas plants, with more than 100,000 biogas plants, followed by Germany with over 10,000 plants. In addition to the 100,000 biogas plants, China also has a large number of household biogas units, which gives a total of approx. 40 million operating units. The article concludes with a discussion of opportunities and barriers to the development of biogas plants, pointing to: financial issues, access to feedstock, political regulations, public awareness and the geopolitical situation. The most frequently cited reasons for investment failure include economic problems, lack of professional knowledge.

No Thumbnail Available
Publication

Influence of the Parameters of Used Biochar on the Dark Fermentation Process

2023, Kozłowski, Kamil, Dach, Jacek, Czekała, Wojciech, Malińska, Krystyna, Świechowski, Kacper, Pulka, Jakub, Lewicki, Andrzej

The aim of the work was to analyze the impact of biochar produced under various production conditions on the course of the dark (hydrogen) fermentation process. A series of experiments were planned, in which the starting material was digestate from a functioning agricultural biogas plant. Changes in the physicochemical properties and microstructure of biochar obtained in the manufacturing process with different parameters were also analyzed. Another issue analyzed was the size and dynamics of the gas production during dark fermentation with the use of various types of auxiliary material. This work showed that increasing the temperature and holding time during the production of biochar from digestion pulp improved the dynamics of biohydrogen production during the process of dark fermentation. The results of this research can be used in industrial research to optimize the process of biohydrogen production using biochar.