Now showing 1 - 8 of 8
No Thumbnail Available
Publication

Variability of Functional Groups of Rhizosphere Fungi of Norway Spruce (Picea abies (L.) H.Karst.) in the Boreal Range: The Wigry National Park, Poland

2023, Behnke-Borowczyk, Jolanta, Korzeniewicz, Robert, Łukowski, Adrian, Baranowska, Marlena, Jagiełło, Radosław, Bułaj, Bartosz, Hauke-Kowalska, Maria, Szmyt, Janusz Stanisław, Behnke, Jerzy M., Robakowski, Piotr, Kowalkowski, Wojciech

Rhizosphere microbial communities can influence plant growth and development. Natural regeneration processes take place in the tree stands of protected areas, which makes it possible to observe the natural changes taking place in the rhizosphere along with the development of the plants. This study aimed to determine the diversity (taxonomic and functional) of the rhizosphere fungal communities of Norway spruce growing in one of four developmental stages. Our research was based on the ITS region using Illumina system sequencing. Saprotrophs dominated in the studied rhizospheres, but their percentage share decreased with the age of the development group (for 51.91 from 43.13%). However, in the case of mycorrhizal fungi, an opposite trend was observed (16.96–26.75%). The most numerous genera were: saprotrophic Aspergillus (2.54–3.83%), Penicillium (6.47–12.86%), Pyrenochaeta (1.39–11.78%), pathogenic Curvularia (0.53–4.39%), and mycorrhizal Cortinarius (1.80–5.46%), Pseudotomentella (2.94–5.64%) and Tomentella (4.54–15.94%). The species composition of rhizosphere fungal communities was favorable for the regeneration of natural spruce and the development of multi-generational Norway spruce stands. The ratio of the abundance of saprotrophic and mycorrhizal fungi to the abundance of pathogens was high and promising for the durability of the large proportion of spruce in the Wigry National Park and for forest ecosystems in general.

No Thumbnail Available
Publication

Niche modelling suggests low feasibility of assisted gene flow for a Neogene relict tree, Castanea sativa Mill.

2023, Beridze, Berika, Sękiewicz, Katarzyna, Walas, Łukasz, Danelia, Irina, Farzaliyev, Vahid, Kvartskhava, Giorgi, Szmyt, Janusz Stanisław, Dering, Monika

Abstract: As many tree species populations are being degraded by climate change, adaptive conservation, and forest management, such as assisted gene flow (AGF), can provide the genetic variation needed to adapt to climate change. The core of this strategy is to assist the adaptation process in populations at risk of climate maladaptation by introducing individuals with beneficial alleles to cope with expected climate changes. Castanea sativa Mill. (sweet chestnut) is an essential component of natural forests in the Mediterranean and Caucasian regions, with a long history of cultivation. Current climate change may seriously threaten the long-term persistence of the species, particularly in the Caucasus region, where the largest range reductions are predicted. Here, we used Species Distribution Models (SDMs) to assess the feasibility of AGF in European and Caucasian populations of Castanea sativa. Bioclimatic variables for present (1981–2010) and future (2071–2100) conditions were obtained from the CHELSA climate database. The final models of future species ranges were averaged across three climate models (IPSL-CM6A-LR, MPIESM1-2-HR and UKESM1-0-L) and three climate change scenarios – SSP1-2.6, SSP3-7.0 and SSP5-8.5. There are marked differences in the climatic niches of the Iberian, Alpine-Apennine, Balkan, and Caucasian populations, with significant implications for AGF. The most suitable European areas for the Caucasian populations were found only in the Adriatic region. The Iberian populations were not compatible with the predicted future climate in the Caucasus in any of the scenarios tested. Suitable areas for Alpine-Apennine populations within the AGF strategy were predicted in the Colchic lowlands, the eastern Pontic mountains and the Hyrcanian forests in the SSP1-2.6 and SSP3-7.0 climate change scenarios. In contrast, the Balkan populations would be compatible at most with the western Pontic mountains and, to a lesser extent, with the Hyrcanian forests. According to the most damaging climate scenario SSP5-8.5, the potential of AGF in the Caucasus with Alpine-Apennine and Balkan populations could be very limited. Our study showed limited applicability of AGF for Castanea sativa between the European and Caucasian populations due to low climate match. Genomic modelling is needed to fully assess the feasibility of this strategy in the species.

No Thumbnail Available
Publication

The origin and beginnings of modern Continuous Cover Forestry in Europe

2025, Pommerening A., Widman U., Szmyt, Janusz Stanisław, Uniwersytet Przyrodniczy w Poznaniu

No Thumbnail Available
Publication

Group-selection system as alternative management of Scots pine (Pinus sylvestris L.) forests facing climate change

2025, Szmyt, Janusz Stanisław

Abstract The Scots pine (Pinus sylvestris L.) is economically and ecologically the most important forest tree species in Poland with its aerial share estimated at 59% and share in growing stock at 68%. Pine forests have been managed according to even-aged silviculture for decades, resulting in a simplified structure and increased vulnerability to climatic stress. Structurally simple forests also show low resilience and adaptability to the observed global changes. The growing awareness of the risks associated with global change is drawing particular attention to the need for alternative management of pine forests that meets the expectations of the public and foresters themselves. In 1992, an experiment with uneven-aged silviculture for pine forest was established in the Gubin Forest District (western Poland). Based on data collected from 49 permanent circular plots (size of 500 m2 each) covering approximately 30 ha of Scots pine forest, the effect of such silviculture on stand structure was analyzed. Dbh, total tree height, tree status, and tree coordinates (x, y) were measured on each plot. Measurements and observations were taken twice, in 1992 and 2019. Structural indices describing different aspects (size structure, vertical structure, spatial structure) were calculated. The dynamics of the stand structure were then analyzed over 27 years, during which the forest was managed under alternative management strategies. The results showed that group-selection cuttings promote strong differentiation of stand structure. The positive effect of such silviculture can be observed in each aspect of the stand structure. Together with other research findings, the results confirm the effectiveness of this alternative silviculture to diversify simplified pine forests to be better adapted to novel environmental conditions.

No Thumbnail Available
Publication

Climate warming, ecological dynamics and nature conservation drive tree diversity in Wigierski National Park, Poland

2025, Robakowski, Piotr, Jagiełło, Radosław, Baranowska, Marlena, Bułaj, Bartosz, Dering, Monika, Hauke-Kowalska, Maria, Korzeniewicz, Robert, Łukowski, Adrian, Szmyt, Janusz Stanisław, Zadworny, Marcin, Wierzbicka, Anna, Popek, Robert, Przybysz, Arkadiusz, Kowalkowski, Wojciech, Uniwersytet Przyrodniczy w Poznaniu

In response to ongoing climate warming, tree species adapted to colder climates are expected to shift their geographic ranges northward. Within the framework of long-term ecological monitoring in Wigry National Park (northeastern Poland), observed changes in forest biocenoses reflect the combined influence of climate change and natural ecological dynamics. This study compares dendroflora composition and diversity between two monitoring periods, 2011 and 2024, as part of an ongoing effort to track climate-related ecological shifts. Tree observations and meas­urements were carried out using concentric circular plots. In the largest plots, all trees with a diameter at breast height (d.b.h.) ≥ 12 cm were recorded by species, and their d.b.h. was measured. In the smaller plots, all trees with a d.b.h. ≥ 2 cm and < 2 cm but taller than 30 cm were similarly identified and measured. Data were recorded with Field-Map software integrated with an electronic calliper. The species-level taxonomic data, individual counts and basal area per species and plot were used to calculate biodiversity indices. Over the 13-year interval, a marked increase in overall dendroflora diversity was observed. Notably, the dominance of canopy-forming conifers – Pinus sylvestris and, to a lesser extent, Picea abies – measured as the proportion of individuals or stem density, has declined. This decline of coniferous species has been accompanied by an increase in the abundance and diversity of broadleaved deciduous species, including Tilia cordata, Quercus robur, Betula pendula, and Acer platanoides. Other thermophilous deciduous taxa also ex­hibited upward trends in both presence and abundance. Furthermore, the exponential of Shannon entropy, reached the highest value when evergreen conifers comprised 35% of the stand composition in 2011 and 18% in 2024. This finding suggests that maximum dendroflora diversity reaches its highest level at an intermediate proportion of conifers presence, rather than under conifers dominance or absence. Collectively, the pro­cesses occurring in Wigierski National Park illustrate the gradual shift in ecotonal forest ecosystems from cold-adapted coniferous species to broadleaved deciduous taxa due to ongoing climate change.

No Thumbnail Available
Publication

Adaptive Silviculture and Climate Change—A Forced Marriage of the 21st Century?

2024, Szmyt, Janusz Stanisław, Dering, Monika

Climatic changes significantly impact forest ecosystems, inevitably affecting forestry and forest-related industry. Considering that most forests are actively managed, there is a need to define the future risks and set a strategy for forestry and silviculture in a changing world. This review provides insight into the new challenges and opportunities forest management and silviculture face in the coming decades. There is sound recognition of risk factors expected from climate change, yet great uncertainty exists in the predictions of the response of forests to new conditions. Additionally, the stakeholders’ interests in the goods and services offered by forests are changing, and this also needs to be taken into account in future forest management. Undoubtedly, the goal of future forestry and silviculture in the 21st century will be primarily to ensure the continuity and sustainability of the forest. Sustainable use of goods and ecosystem services from forests will be directly related to the continuity and sustainability of the forest in the future. Adaptive forest management aims to promote the adaptive capacity of forests to new conditions resulting from climate change. If adaptation efforts are effective, adaptive forest management should be a kind of risk management. There is no one-fits-all strategy for adaptation to uncertain future conditions. Silviculture in the 21st century is expected to be more conducive to adapting forests to changes. Operational silvicultural activities should focus on ensuring the resilience and adaptation of forests to future environmental conditions. Modern silviculture offers activities that fall within the scope of contemporary close-to-nature silviculture practices. However, some of the currently applied practices will require review and modification to be applicable under new conditions. This review also identifies the need to fill knowledge gaps in order to develop more effective and flexible adaptation strategies to foster sustainable forest development and, thus, sustainable forestry.

No Thumbnail Available
Publication

Hodowla lasu wobec globalnych zmian

2024, Szmyt, Janusz Stanisław, Borecki, Tomasz

No Thumbnail Available
Publication

Revisiting silvicultural systems: Towards a systematic and generic design of tree regeneration methods

2024, Pommerening, Arne, Szmyt, Janusz Stanisław, Duchiron, Marie-Stella