Now showing 1 - 15 of 15
No Thumbnail Available
Publication

Microbiome analysis of novel cement composites admixed with biopolymer and silver nanoparticles

2025, Sybis, Marta, Staninska-Pięta, Justyna, Paluch, Emil, KonowaƂ, Emilia, Cyplik, PaweƂ, Wolko, Ɓukasz, Wiglusz, Rafal J., Czarny, Jakub, Piotrowska-Cyplik, Agnieszka

No Thumbnail Available
Publication

Diversity of Bacterial Communities in Horse Bean Plantations Soils with Various Cultivation Technologies

2025, SwędrzyƄska, Dorota, Bocianowski, Jan, Wolna-Maruwka, Agnieszka, SwędrzyƄski, Arkadiusz, PƂaza, Anna, Górski, RafaƂ, Wolko, Ɓukasz, Niewiadomska, Alicja

Modern agriculture should limit its degrading impact on the soils, the natural environment, and the climate. No-tillage soil cultivation technologies, which have been in use for many years and are constantly being improved, are a good example of these actions; although, in-depth studies on their impact on the soil microbial community are currently scarce. The aim of our study was to evaluate the effect of cultivation technology on the soil bacterial community to assess differences that can be reflected in the environmental and agricultural functionality, identifying possible bacterial species with ecological properties. In this context, the composition of bacterial communities (at the phyla, order, class, and species levels) was evaluated under different conditions, such as conventional tillage (CT) (plophing), reduced tillage (RT) (stubble cultivator), strip tillage (ST), and no-tillage (direct sowing on stubble and fallow buffer zone of the experimental field), in a horse bean plantation. Metagenomic methods (next generation sequencing technology, NGS) were used to determine the percentage of individual operational taxonomic units (OTUs). Our study showed that no-tillage cultivation technologies, mainly strip and no-tillage methods, had a positive effect on microbiological communities. In fact, key species related to soil fertility and crop yield, such as Gemmatimonas aurantiaca (a microorganism that reduce nitrous oxide, N2O in soil) and Aeromicrobium ponti (a beneficial species for the soil environment, essential for the proper functioning of the crop agroecosystem), increased in reduced cultivation technologies. These species can determine soil fertility and crop yields, and therefore, they are very important for sustainable and even regenerative agriculture. Further studies of soil samples collected from other crop plantations under different cropping systems may indicate beneficial microbial species that are important for soil fertility.

No Thumbnail Available
Patent

Sposób biodegradacji zanieczyszczeƄ ropopochodnych z gleby wspomagany surfaktantami naturalnymi

2020, ROMAN MARECIK, PAWEƁ CYPLIK, AGNIESZKA PIOTROWSKA-CYPLIK, ƁUKASZ CHRZANOWSKI, ƁUKASZ WOLKO, RÓƻA BIEGAƃSKA-MARECIK

No Thumbnail Available
Publication

Expression patterns of candidate genes for the Lr46/Yr29 “slow rust” locus in common wheat (Triticum aestivum L.) and associated miRNAs inform of the gene conferring the Puccinia triticina resistance trait

2024, SpychaƂa, Julia, Tomkowiak, Agnieszka, Noweiska, Aleksandra, Bobrowska, Roksana, Rychel-Bielska, Sandra, Bocianowski, Jan, Wolko, Ɓukasz, Kowalczewski, PrzemysƂaw Ɓukasz, Nowicki, Marcin, Kwiatek, MichaƂ Tomasz

Leaf rust caused by Puccinia triticina (Pt) is one of the most impactful diseases causing substantial losses in common wheat (Triticum aestivum L.) crops. In adult plants resistant to Pt, a horizontal adult plant resistance (APR) is observed: APR protects the plant against multiple pathogen races and is distinguished by durable persistence under production conditions. The Lr46/Yr29 locus was mapped to chromosome 1B of common wheat genome, but the identity of the underlying gene has not been demonstrated although several candidate genes have been proposed. This study aimed to analyze the expression of nine candidate genes located at the Lr46/Yr29 locus and their four complementary miRNAs (tae-miR5384-3p, tae-miR9780, tae-miR9775, and tae-miR164), in response to Pt infection. The plant materials tested included five reference cultivars in which the molecular marker csLV46G22 associated with the Lr46/Yr29-based Pt resistance was identified, as well as one susceptible control cultivar. Biotic stress was induced in adult plants by inoculation with fungal spores under controlled conditions. Plant material was sampled before and at 6, 12, 24, 48 hours post inoculation (hpi). Differences in expression of candidate genes at the Lr46/Yr29 locus were analyzed by qRT-PCR and showed that the expression of the genes varied at the analyzed time points. The highest expression of Lr46/Yr29 candidate genes (Lr46-Glu1, Lr46-Glu2, Lr46-Glu3, Lr46-RLK1, Lr46-RLK2, Lr46-RLK3, Lr46-RLK4, Lr46-Snex, and Lr46-WRKY) occurred at 12 and 24 hpi and such expression profiles were obtained only for one candidate gene among the nine genes analyzed (Lr46-Glu2), indicating that it may be a contributing factor in the resistance response to Pt infection.

No Thumbnail Available
Publication

The Influence of Bacteria Causing Subclinical Mastitis on the Structure of the Cow’s Milk Microbiome

2022, Kaczorowski, Ɓukasz, Powierska-Czarny, Jolanta, Wolko, Ɓukasz, Piotrowska-Cyplik, Agnieszka, Cyplik, PaweƂ, Czarny, Jakub

Mastitis is the most expensive disease of dairy cattle across the world and is the main reason for the use of antibiotics in animal husbandry. The aim of this study was to analyze the microbiome of raw milk obtained from a semi-subsistence farm located in the Kuyavian–Pomeranian Voivodeship in Poland. Milk from healthy cows and from cows with subclinical mastitis was analyzed. The following pathogenic bacteria were found in milk from individuals with subclinical mastitis: Escherichia coli or Streptococcus agalactiae. The composition of drinking milk was assessed on the basis of 16S rRNA gene sequencing using the Ion Torrent platform. Based on the conducted research, significant changes in the composition of the milk microbiome were found depending on the physiological state of the cows. The microbiome of milk from healthy cows differed significantly from the milk from cows with subclinical mastitis. Two phyla dominated in the milk from healthy cows: Firmicutes and Proteobacteria, in equal amounts. On the contrary, in the milk from cows with diagnosed subclinical mastitis, one of the types dominated: either Firmicutes or Proteobacteria, and was largely predominant. Moreover, the milk microflora from the ill animals were characterized by lower values of the determined biodiversity indicators than the milk from healthy cows. The presence of pathogenic bacteria in the milk resulted in a significant reduction in the share of lactic acid bacteria in the structure of the population of microorganisms, which are of great importance in the production technology of regional products.

No Thumbnail Available
Publication

New potential biomarkers of ulcerative colitis and disease course — integrated metagenomic and metabolomic analysis among Polish patients

2025, Zakerska-Banaszak, Oliwia, Ladziak, Karolina, Kruszka, Dariusz, Maciejewski, Kacper, Wolko, Ɓukasz, Krela-Kazmierczak, Iwona, Zawada, Agnieszka, Vibeke Vestergaard, Marie, Dobrowolska, Agnieszka, Skrzypczak-Zielinska, Marzena

Abstract Background & aim The course of ulcerative colitis (UC) involves successive periods of remission and exacerbation but is difficult to predict. Gut dysbiosis in UC has already been intensively investigated. However, are periods of exacerbation and remission associated with specific disturbances in the composition of the intestinal microbiota and its metabolome? Our goal was to answer this question and to identify bacteria and metabolites necessary to maintain the remission. Methods We enrolled 65 individuals, including 20 UC patients in remission, 15 in exacerbation, and 30 healthy controls. Metagenomic profiling of the gut microbial composition was performed based on 16S rRNA V1-V9 sequencing. Stool and serum metabolic profiles were studied by chromatography combined with mass spectrometry. Results We revealed significant differences in the gut bacterial and metabolic composition between patients in active UC and those in remission, as well as in healthy controls. As associated with UC remission we have identified following bacteria: Akkermansia, Agathobacter, Anaerostipes, Enterorhabdus, Coprostanoligenes, Colinsella, Ruminococcus, Subdoligranulum, Lachnoclostridium, Coriobacteriales, Erysipelotrichaceae, and Family XII, and compounds – 1-hexadecanol, phytanic acid, squalene, adipic acid, cis-gondoic acid, nicotinic acid, tocopherol gamma, ergosterol and lithocholic acid. Whereas, in the serum lithocholic acid, indole and xanthine were found as potential candidates for biomarkers of UC remission. Conclusion We have demonstrated that specific bacteria, metabolites, and their correlations could be crucial in the remission of UC among Polish patients. Our results provide valuable insights and a significant source for developing new hypotheses on host-microbiome interactions in diagnosis and course of UC. Graphical abstract

No Thumbnail Available
Publication

Potassium Chloride, Sodium Lactate and Sodium Citrate Impaired the Antimicrobial Resistance and Virulence of Pseudomonas aeruginosa NT06 Isolated from Fish

2023, Tomaƛ, Natalia, Myszka, Kamila, Wolko, Ɓukasz

Sodium chloride (NaCl) is a commonly used additive in minimally processed fish-based products. The addition of NaCl to fish products and packaging in a modified atmosphere is usually efficient with regard to limiting the occurrence of the aquatic environmental pathogen Pseudomonas aeruginosa. Given the negative effects of excess NaCl in the diet, there is a growing demand to reduce NaCl in food products with safer substituents, but the knowledge of their impact on antibiotic resistant P. aeruginosa is limited. This study aimed to evaluate the physiological and transcriptome characteristics of P. aeruginosa NT06 isolated from fish and to determine the effect of selected concentrations of alternative NaCl compounds (KCl/NaL/NaC) on the P. aeruginosa NT06 virulence phenotype and genotype. In the study, among the isolated microorganisms, P. aeruginosa NT06 showed the highest antibiotic resistance (to ampicillin, ceftriaxone, nalidixic acid, and norfloxacin) and the ability to grow at 4 °C. The Comprehensive Antibiotic Resistance Database (CARD) and the Virulence Factor Database (VFDB) revealed the presence of 24 and 134 gene products assigned to AMR and VF in the P. aeruginosa NT06 transcriptome, respectively. KCl, KCl/NaL and KCl/NaL/NaC inhibited pyocyanin biosynthesis, elastase activity, and protease activity from 40 to 77%. The above virulence phenotypic observations were confirmed via RT–qPCR analyses, which showed that all tested AMR and VF genes were the most downregulated due to KCl/NaL/NaC treatment. In conclusion, this study provides insight into the potential AMR and VF among foodborne P. aeruginosa and the possible impairment of those features by KCl, NaL, and NaC, which exert synergistic effects and can be used in minimally processed fish-based products.

No Thumbnail Available
Publication

Gallic and ferulic acids suppress proteolytic activities and volatile trimethylamine production in the food‐borne spoiler Rahnella aquatilis KM05

2023, Myszka, Kamila, Tomaƛ, Natalia, Wolko, Ɓukasz

AbstractBACKGROUNDRahnella aquatilis is a recognised microbial threat that alters the sensory properties of seafood. The high frequency with which R. aquatilis is isolated from fish has prompted a search for alternative preservatives. In the present study, in vitro and fish‐based ecosystem (raw salmon‐based medium) approaches were used to validate the antimicrobial effects of gallic (GA) and ferulic (FA) acids against R. aquatilis KM05. The results were compared with data describing the response of KM05 to sodium benzoate. Bioinformatics data of the whole genome were used to analyse the potential for fish spoilage by KM05 in detail, and the results revealed the main physiological characteristics that underlie reduced seafood quality.RESULTSIn the KM05 genome, the most abundantly enriched Gene Ontology terms were ‘metabolic process’, ‘organic substance metabolic process’ and ‘cellular process’. Through an evaluation of the Pfam annotations, 15 annotations were found to be directly involved in the proteolytic activity of KM05. Peptidase_M20 was the most abundantly represented (abundance value of 14060). Proteins representing the CutC family (abundance value of 427) indicated the potential for KM05 degradation of trimethyl‐amine‐N‐oxide. Subinhibitory concentrations of GA and FA suppressed the proteolytic activities of KM05 both in vitro and in RS medium by an average of 33–45%. These results were confirmed by quantitative real‐time PCR experiments, which also showed that the expression levels of genes involved in proteolytic activities and volatile trimethylamine production were also decreased.CONCLUSIONPhenolic compounds can be used as potential food additives for preventing quality deterioration of fish products. © 2023 Society of Chemical Industry.

No Thumbnail Available
Publication

Global transcriptome analysis of Pseudomonas aeruginosa NT06 response to potassium chloride, sodium lactate, sodium citrate, and microaerophilic conditions in a fish ecosystem

2024, Tomaƛ, Natalia, Myszka, Kamila, Wolko, Ɓukasz, Juzwa, Wojciech

Abstract Pseudomonas aeruginosa is an opportunistic pathogen that recently has been increasingly isolated from foods, especially from minimally processed fish-based products. Those are preserved by the addition of sodium chloride (NaCl) and packaging in a modified atmosphere. However, the current trends of minimizing NaCl content may result in an increased occurrence of P. aeruginosa. NaCl can be replaced with potassium chloride (KCl) or sodium salts of organic acids. Herein, we examined the antimicrobial effects of KCl, sodium lactate (NaL), sodium citrate (NaC), and sodium acetate (NaA) against P. aeruginosa NT06 isolated from fish. Transcriptome response of cells grown in medium imitating a fish product supplemented with KCl and KCl/NaL/NaC and maintained under microaerophilic conditions was analysed. Flow cytometry analysis showed that treatment with KCl and KCl/NaL/NaC resulted in changed metabolic activity of cells. In response to KCl and KCl/NaL/NaC treatment, genes related to cell maintenance, stress response, quorum sensing, virulence, efflux pump, and metabolism were differentially expressed. Collectively, our results provide an improved understanding of the response of P. aeruginosa to NaCl alternative compounds that can be implemented in fish-based products and encourage further exploration of the development of effective methods to protect foods against the P. aeruginosa, underestimate foodborne bacteria.

No Thumbnail Available
Publication

Temperature, Salinity and Garlic Additive Shape the Microbial Community during Traditional Beetroot Fermentation Process

2023, Staninska-Pięta, Justyna, Czarny, Jakub, Wolko, Ɓukasz, Cyplik, PaweƂ, DroĆŒdĆŒyƄska, Agnieszka, Przybylak, Martyna, Ratajczak, Katarzyna, Piotrowska-Cyplik, Agnieszka

Plant-based traditional fermented products are attracting a lot of interest in global markets. An example of them is beetroot leaven, which is valued for its high bioactive compound content. The variety of production recipes and the spontaneous nature of red beet fermentation favor its high diversity. This study aimed to analyze the impact of external factors—temperature, brine salinity, and garlic dose—on the beetroot fermentation and bacterial metapopulation responsible for this process. The research results confirmed the significant influence of the selected and analyzed factors in shaping the leaven physicochemical profile including organic acid profile and betalain content. Analysis of bacterial populations proved the crucial importance of the first 48 h of the fermentation process in establishing a stable metapopulation structure and confirmed that this is a targeted process driven by the effect of the analyzed factors. Lactobacillaceae, Enterobacteriaceae, and Leuconostocaceae were observed to be the core microbiome families of the fermented red beet. Regardless of the impact of the tested factors, the leaven maintained the status of a promising source of probiotic bacteria. The results of this research may be helpful in the development of the regional food sector and in improving the quality and safety of traditionally fermented products such as beetroot leaven.

No Thumbnail Available
Publication

Ecological Engineering Using Biological Crusts: Effects on Soil Physicochemical Properties in West-Central Region of Burkina Faso

2024, Mare, Boussa Tockville Josue, Wagner, Ines, Lankoande, YiĂ©nibirma Josias, Lankoande, Benjamin, Spychalski, Waldemar, Wolko, Ɓukasz, Juilleret, JérĂŽme

The land degradation in Burkina Faso is one of the major development challenges in the agricultural sector. Among the various existing means of soil recovery and improvement, the use of ecological engineering based on soils microorganisms also appears as a tool for sustainable land management. For this purpose, a trial was set up in Péyiri in the West-Center region of Burkina Faso and focused on studying the effects of induced biological crusts on the physicochemical properties of degraded soils. A split-plot design with three replications was set up on three types of soil environment with increasing degradation level, namely "Soil environment with a dense herbaceous layer and some shrubs" (Site 3), "Soil environment with a less dense herbaceous layer" (Site 2) and "Bare soil environment" (Site 1). On each replication plot, three samples core were taken from the 0-20cm layer along the diagonal and were subjected to physicochemical analysis. The organic status (Total C, N and C/N ratio), physical properties (particle size distribution, texture, moisture content), chemical indexes (Séch, CEC, pH, V, Conductivity) and major nutrients (NO3-, NH4+, K+, Mg2+, Ca2+, Total P) were evaluated. The results obtained revealed that the treatment with the induced biocrust increased the rates of C, N, Séch, CEC, V, pH, NH4+, P and clay fraction, with much higher moisture. Taking into account the level of soil degradation, the balance on the site 1 presented the highest positive values in N, clay, pF4.5, Sech, CEC, pH, and P. On the site 2 and site 3, the results balance is sometimes positive or negative depending on the considered soil properties. Then the level of soil degradation influenced the biocrust efficiency, but in general the use of induced biocrust led to an improvement in the physicochemical properties of degraded soils especially on some major nutrients such as N and P. Soils in Burkina Faso like the others Sahelian countries are mostly deficient in these major nutrients. The induced biocrusts seem to be as a sustainable management tool for drylands agrosystems.

No Thumbnail Available
Publication

Effect of Processing Treatment and Modified Atmosphere Packing on Carrot’s Microbial Community Structure by Illumina MiSeq Sequencing

2022, Ratajczak, Katarzyna, Staninska-Pięta, Justyna, Czarny, Jakub, Cyplik, PaweƂ, Wolko, Ɓukasz, Piotrowska-Cyplik, Agnieszka

The aim of this study was to analyze the microbiome of carrot (Daucus carota subsp. sativus) subjected to minimal pre-treatment (rinsing in organic acid solution) and packaging in a high-oxygen modified atmosphere, and then stored for 17 days under refrigeration conditions (4 °C). The highest levels of bacteria in the carrot microbiome were characterized, at almost 78%, by bacteria belonging to the Enterobacteriaceae and Pseudomonadaceae families. Rinsing in a solution of ascorbic and citric acids resulted in the improvement of microbiological quality in the first day of storage. However, the use of a high-oxygen modified atmosphere extended the shelf life of the minimally processed product. Compared to carrots stored in air, those stored in high oxygen concentration were characterized by a greater ratio of bacteria belonging to the Serratia and Enterobacter genera, and a lower ratio belonging to the Pseudomonas and Pantoea genera. Moreover, the ÎČ-biodiversity analysis confirmed that the oxygen concentration was the main factor influencing the differentiation of the metabiomes of the stored carrots. The bacterial strains isolated from carrots identified by molecular methods were mostly pathogenic or potentially pathogenic microorganisms. Neither the minimal pre-treatment nor packaging in high-oxygen atmosphere was able to eliminate the threat of pathogenic bacteria emerging in the product.

No Thumbnail Available
Publication

Acetic and citric acids effect the type II secretion system and decrease the metabolic activities of salmon spoilage-related Rahnella aquatilis KM05

2024, Myszka, Kamila, Wolko, Ɓukasz, Borkowska, Monika

AbstractRahnella aquatilis causes seafoods to spoil by metabolizing sulfur-containing amino acids and/or proteins, producing H2S in products. The type II secretion system (T2SS) regulates the transport of proteases from the cytoplasm to the surrounding environment and promotes bacterial growth at low temperatures. To prevent premature fish spoilage, new solutions for inhibiting the T2SS of bacteria should be researched. In this study, global transcriptome sequencing was used to analyze the spoilage properties of R. aquatilis KM05. Two of the mapped genes/coding sequences (CDSs) were matched to the T2SS, namely, qspF and gspE, and four of the genes/CDSs, namely, ftsH, rseP, ptrA and pepN, were matched to metalloproteases or peptidases in R. aquatilis KM05. Subinhibitory concentrations of citric (18 ”M) and acetic (41 ”M) acids caused downregulation of T2SS-related genes (range from − 1.0 to -4.5) and genes involved in the proteolytic activities of bacteria (range from − 0.5 to -4.0). The proteolytic activities of R. aquatilis KM05 in vitro were reduced by an average of 40%. The in situ experiments showed the antimicrobial properties of citric and acetic acids against R. aquatilis KM05; the addition of an acidulant to salmon fillets limited microbial growth. Citric and acetic acids extend the shelf life of fish-based products and prevent food waste.

No Thumbnail Available
Patent

SposĂłb usuwania zanieczyszczeƄ ropopochodnych z gleby na drodze biodegradacji przy uĆŒyciu kwasĂłw humusowych i hydrolizatu droĆŒdĆŒowego

2020, ROMAN MARECIK, PAWEƁ CYPLIK, AGNIESZKA PIOTROWSKA-CYPLIK, ƁUKASZ CHRZANOWSKI, ƁUKASZ WOLKO, RÓƻA BIEGAƃSKA-MARECIK

No Thumbnail Available
Patent

Konsorcjum bakteryjno-grzybowe i sposĂłb bioremediacji gleby skaĆŒonej substancjami ropopochodnymi

2020, ROMAN MARECIK, PAWEƁ CYPLIK, AGNIESZKA PIOTROWSKA-CYPLIK, ƁUKASZ CHRZANOWSKI, ƁUKASZ WOLKO, RÓƻA BIEGAƃSKA-MARECIK