Now showing 1 - 10 of 10
No Thumbnail Available
Research Project

Czynniki transkrypcyjne jako narzędzia masowego działania w ulepszaniu cech przemysłowych u drożdży

No Thumbnail Available
Publication

Transcription factors enhancing synthesis of recombinant proteins and resistance to stress in Yarrowia lipolytica

2023, Gorczyca, Maria, Nicaud, Jean-Marc, Celińska, Ewelina

Abstract Resistance to environmental stress and synthesis of recombinant proteins (r-Prots) are both complex, strongly interconnected biological traits relying on orchestrated contribution of multiple genes. This, in turn, makes their engineering a challenging task. One of the possible strategies is to modify the operation of transcription factors (TFs) associated with these complex traits. The aim of this study was to examine the potential implications of selected five TFs (HSF1-YALI0E13948g, GZF1-YALI0D20482g, CRF1-YALI0B08206g, SKN7-YALI0D14520g, and YAP-like-YALI0D07744g) in stress resistance and/or r-Prot synthesis in Yarrowia lipolytica. The selected TFs were over-expressed or deleted (OE/KO) in a host strain synthesizing a reporter r-Prot. The strains were subjected to phenotype screening under different environmental conditions (pH, oxygen availability, temperature, and osmolality), and the obtained data processing was assisted by mathematical modeling. The results demonstrated that growth and the r-Prot yields under specific conditions can be significantly increased or decreased due to the TFs’ engineering. Environmental factors “awakening” individual TFs were indicated, and their contribution was mathematically described. For example, OE of Yap-like TF was proven to alleviate growth retardation under high pH, while Gzf1 and Hsf1 were shown to serve as universal enhancers of r-Prot production in Y. lipolytica. On the other hand, KO of SKN7 and HSF1 disabled growth under hyperosmotic stress. This research demonstrates the usefulness of the TFs engineering approach in the manipulation of complex traits and evidences newly identified functions of the studied TFs. Key points • Function and implication in complex traits of 5 TFs in Y. lipolytica were studied. • Gzf1 and Hsf1 are the universal r-Prots synthesis enhancers in Y. lipolytica. • Yap-like TF’s activity is pH-dependent; Skn7 and Hsf1 act in osmostress response.

No Thumbnail Available
Publication

“Fight-flight-or-freeze” – how Yarrowia lipolytica responds to stress at molecular level?

2022, Celińska, Ewelina

Abstract Yarrowia lipolytica is a popular yeast species employed in multiple biotechnological production processes. High resistance to extreme environmental conditions or metabolic burden triggered by synthetically forced over-synthesis of a target metabolite has its practical consequences. The proud status of an “industrial workhorse” that Y. lipolytica has gained is directly related to such a quality of this species. With the increasing amount of knowledge coming from detailed functional studies and comprehensive omics analyses, it is now possible to start painting the landscape of the molecular background behind stress response and adaptation in Y. lipolytica. This review summarizes the current state-of-art of a global effort in revealing how Y. lipolytica responds to both environmental threats and the intrinsic burden caused by the overproduction of recombinant secretory proteins at the molecular level. Detailed lists of genes, proteins, molecules, and biological processes deregulated upon exposure to external stress factors or affected by over-synthesis of heterologous proteins are provided. Specificities and universalities of Y. lipolytica cellular response to different extrinsic and intrinsic threats are highlighted. Key points • Y. lipolytica as an industrial workhorse is subjected to multiple stress factors. • Cellular responses together with involved genes, proteins, and molecules are reviewed. • Native stress response mechanisms are studied and inspire engineering strategies.

No Thumbnail Available
Publication

Multiple region high resolution melting-based method for accurate differentiation of food-derived yeasts at species level resolution

2023, Borkowska, Monika, Celińska, Ewelina

No Thumbnail Available
Publication

‘Small volume—big problem’: culturing Yarrowia lipolytica in high-throughput micro-formats

2024, Celińska, Ewelina, Gorczyca, Maria

AbstractWith the current progress in the ‘design’ and ‘build’ stages of the ‘design-build-test-learn’ cycle, many synthetic biology projects become ‘test-limited’. Advances in the parallelization of microbes cultivations are of great aid, however, for many species down-scaling leaves a metabolic footprint. Yarrowia lipolytica is one such demanding yeast species, for which scaling-down inevitably leads to perturbations in phenotype development. Strictly aerobic metabolism, propensity for filamentation and adhesion to hydrophobic surfaces, spontaneous flocculation, and high acidification of media are just several characteristics that make the transfer of the micro-scale protocols developed for the other microbial species very challenging in this case. It is well recognized that without additional ‘personalized’ optimization, either MTP-based or single-cell-based protocols are useless for accurate studies of Y. lipolytica phenotypes. This review summarizes the progress in the scaling-down and parallelization of Y. lipolytica cultures, highlighting the challenges that occur most frequently and strategies for their overcoming. The problem of Y. lipolytica cultures down-scaling is illustrated by calculating the costs of micro-cultivations, and determining the unintentionally introduced, thus uncontrolled, variables. The key research into culturing Y. lipolytica in various MTP formats and micro- and pico-bioreactors is discussed. Own recently developed and carefully pre-optimized high-throughput cultivation protocol is presented, alongside the details from the optimization stage. We hope that this work will serve as a practical guide for those working with Y. lipolytica high-throughput screens.

No Thumbnail Available
Publication

An Interplay between Transcription Factors and Recombinant Protein Synthesis in Yarrowia lipolytica at Transcriptional and Functional Levels—The Global View

2024, Gorczyca, Maria, Korpys-Woźniak, Paulina, Celińska, Ewelina

Transcriptional regulatory networks (TRNs) associated with recombinant protein (rProt) synthesis in Yarrowia lipolytica are still under-described. Yet, it is foreseen that skillful manipulation with TRNs would enable global fine-tuning of the host strain’s metabolism towards a high-level-producing phenotype. Our previous studies investigated the transcriptomes of Y. lipolytica strains overproducing biochemically different rProts and the functional impact of transcription factors (TFs) overexpression (OE) on rProt synthesis capacity in this species. Hence, much knowledge has been accumulated and deposited in public repositories. In this study, we combined both biological datasets and enriched them with further experimental data to investigate an interplay between TFs and rProts synthesis in Y. lipolytica at transcriptional and functional levels. Technically, the RNAseq datasets were extracted and re-analyzed for the TFs’ expression profiles. Of the 140 TFs in Y. lipolytica, 87 TF-encoding genes were significantly deregulated in at least one of the strains. The expression profiles were juxtaposed against the rProt amounts from 125 strains co-overexpressing TF and rProt. In addition, several strains bearing knock-outs (KOs) in the TF loci were analyzed to get more insight into their actual involvement in rProt synthesis. Different profiles of the TFs’ transcriptional deregulation and the impact of their OE or KO on rProts synthesis were observed, and new engineering targets were pointed.

No Thumbnail Available
Publication

‘Mother(Nature) knows best’ – hijacking nature-designed transcriptional programs for enhancing stress resistance and protein production in Yarrowia lipolytica; presentation of YaliFunTome database

2024, Gorczyca, Maria, Białas, Wojciech, Nicaud, Jean-Marc, Celińska, Ewelina

Abstract Background In the era of rationally designed synthetic biology, heterologous metabolites production, and other counter-nature engineering of cellular metabolism, we took a step back and recalled that ‘Mother(-Nature) knows best’. While still aiming at synthetic, non-natural outcomes of generating an ‘over-production phenotype’ we dug into the pre-designed transcriptional programs evolved in our host organism—Yarrowia lipolytica, hoping that some of these fine-tuned orchestrated programs could be hijacked and used. Having an interest in the practical outcomes of the research, we targeted industrially-relevant functionalities—stress resistance and enhanced synthesis of proteins, and gauged them over extensive experimental design’s completion. Results Technically, the problem was addressed by screening a broad library of over 120 Y. lipolytica strains under 72 combinations of variables through a carefully pre-optimized high-throughput cultivation protocol, which enabled actual phenotype development. The abundance of the transcription program elicitors—transcription factors (TFs), was secured by their overexpression, while challenging the strains with the multitude of conditions was inflicted to impact their activation stratus. The data were subjected to mathematical modeling to increase their informativeness. The amount of the gathered data prompted us to present them in the form of a searchable catalog – the YaliFunTome database (https://sparrow.up.poznan.pl/tsdatabase/)—to facilitate the withdrawal of biological sense from numerical data. We succeeded in the identification of TFs that act as omni-boosters of protein synthesis, enhance resistance to limited oxygen availability, and improve protein synthesis capacity under inorganic nitrogen provision. Conclusions All potential users are invited to browse YaliFunTome in the search for homologous TFs and the TF-driven phenotypes of interest.

No Thumbnail Available
Publication

Using Euf1 transcription factor as a titrator of erythritol-inducible promoters in Yarrowia lipolytica; insight into the structure, splicing, and regulation mechanism

2024, Celińska, Ewelina, Korpys-Woźniak, Paulina, Gorczyca, Maria, Nicaud, Jean-Marc

Abstract Controllable regulatory elements, like inducible, titratable promoters, are highly desired in synthetic biology toolboxes. A set of previously developed erythritol-inducible promoters along with an engineered Yarrowia lipolytica host strain were shown to be a very potent expression platform. In this study, we push the previously encountered limits of the synthetic promoters’ titratability (by the number of upstream motifs) by using a compatible transcription factor, Euf1, as the promoter titrator. Overexpression of spliced EUF1 turned out to be very efficient in promoting expression from the compatible promoter, however, the erythritol-inducible character of the promoter was then lost. Analysis of the EUF1’s splicing pattern suggests that the intron removal is promoted in the presence of erythritol, but is not dependent on it. The 3D structures of spliced versus unspliced Euf1 were modeled, and ligand-binding strength was calculated and compared. Furthermore, the EUF1-dependent expression profile under different chemical stimulants was investigated. Depletion of carbon source was identified as the significant factor upregulating the expression from the Euf1-dependent promoter (2–10-fold). Considering these findings and transcriptomics data, a new mechanism of the Euf1-regulated promoter action is proposed, involving a ‘catabolite repression’ transcription factor—Adr1, both acting on the same ERY-inducible promoter.

No Thumbnail Available
Publication

Molecular background of HAC1-driven improvement in the secretion of recombinant protein in Yarrowia lipolytica based on comparative transcriptomics

2023, Korpys-Woźniak, Paulina, Celińska, Ewelina

No Thumbnail Available
Publication

Tracking adulteration of nectar honey varieties using a high-resolution melting qPCR technique validated with melissopalinology

2024, Borkowska, Monika, Burzyńska, Marta Stefania, Piasecka-Kwiatkowska, Dorota, Celińska, Ewelina