Now showing 1 - 3 of 3
No Thumbnail Available
Publication

The Prediction of Pectin Viscosity Using Machine Learning Based on Physical Characteristics—Case Study: Aglupectin HS-MR

2024, Siejak, Przemysław, Przybył, Krzysztof, Masewicz, Łukasz, Walkowiak, Katarzyna, Rezler, Ryszard, Baranowska, Hanna Maria

In the era of technology development, the optimization of production processes, quality control and at the same time increasing production efficiency without wasting food, artificial intelligence is becoming an alternative tool supporting many decision-making processes. The work used modern machine learning and physical analysis tools to evaluate food products (pectins). Various predictive models have been presented to estimate the viscosity of pectin. Based on the physical analyses, the characteristics of the food product were isolated, including L*a*b* color, concentration, conductance and pH. Prediction was determined using the determination index and loss function for individual machine learning algorithms. As a result of the work, it turned out that the most effective estimation of pectin viscosity was using Decision Tree (R2 = 0.999) and Random Forest (R2 = 0.998). In the future, the prediction of pectin properties in terms of viscosity recognition may be significantly perceived, especially in the food and pharmaceutical industries. Predicting the natural pectin substrate may contribute to improving quality, increasing efficiency and at the same time reducing losses of the obtained final product.

No Thumbnail Available
Publication

Explainable AI: Machine Learning Interpretation in Blackcurrant Powders

2024, Przybył, Krzysztof

Recently, explainability in machine and deep learning has become an important area in the field of research as well as interest, both due to the increasing use of artificial intelligence (AI) methods and understanding of the decisions made by models. The explainability of artificial intelligence (XAI) is due to the increasing consciousness in, among other things, data mining, error elimination, and learning performance by various AI algorithms. Moreover, XAI will allow the decisions made by models in problems to be more transparent as well as effective. In this study, models from the ‘glass box’ group of Decision Tree, among others, and the ‘black box’ group of Random Forest, among others, were proposed to understand the identification of selected types of currant powders. The learning process of these models was carried out to determine accuracy indicators such as accuracy, precision, recall, and F1-score. It was visualized using Local Interpretable Model Agnostic Explanations (LIMEs) to predict the effectiveness of identifying specific types of blackcurrant powders based on texture descriptors such as entropy, contrast, correlation, dissimilarity, and homogeneity. Bagging (Bagging_100), Decision Tree (DT0), and Random Forest (RF7_gini) proved to be the most effective models in the framework of currant powder interpretability. The measures of classifier performance in terms of accuracy, precision, recall, and F1-score for Bagging_100, respectively, reached values of approximately 0.979. In comparison, DT0 reached values of 0.968, 0.972, 0.968, and 0.969, and RF7_gini reached values of 0.963, 0.964, 0.963, and 0.963. These models achieved classifier performance measures of greater than 96%. In the future, XAI using agnostic models can be an additional important tool to help analyze data, including food products, even online.

No Thumbnail Available
Publication

Efficiency of Identification of Blackcurrant Powders Using Classifier Ensembles

2024, Przybył, Krzysztof, Walkowiak, Katarzyna, Kowalczewski, Przemysław Łukasz

In the modern times of technological development, it is important to select adequate methods to support various food and industrial problems, including innovative techniques with the help of artificial intelligence (AI). Effective analysis and the speed of algorithm implementation are key points in assessing the quality of food products. Non-invasive solutions are being sought to achieve high accuracy in the classification and evaluation of various food products. This paper presents various machine learning algorithm architectures to evaluate the efficiency of identifying blackcurrant powders (i.e., blackcurrant concentrate with a density of 67 °Brix and a color coefficient of 2.352 (E520/E420) in combination with the selected carrier) based on information encoded in microscopic images acquired via scanning electron microscopy (SEM). Recognition of blackcurrant powders was performed using texture feature extraction from images aided by the gray-level co-occurrence matrix (GLCM). It was evaluated for quality using individual single classifiers and a metaclassifier based on metrics such as accuracy, precision, recall, and F1-score. The research showed that the metaclassifier, as well as a single random forest (RF) classifier most effectively identified blackcurrant powders based on image texture features. This indicates that ensembles of classifiers in machine learning is an alternative approach to demonstrate better performance than the existing traditional solutions with single neural models. In the future, such solutions could be an important tool to support the assessment of the quality of food products in real time. Moreover, ensembles of classifiers can be used for faster analysis to determine the selection of an adequate machine learning algorithm for a given problem.