Szanowni Państwo, w związku z bardzo dużą ilością zgłoszeń, rejestracją danych w dwóch systemach bibliograficznych, a jednocześnie zmniejszonym zespołem redakcyjnym proces rejestracji i redakcji opisów publikacji jest wydłużony. Bardzo przepraszamy za wszelkie niedogodności i dziękujemy za Państwa wyrozumiałość.
Repository logoRepository logoRepository logoRepository logo
Repository logoRepository logoRepository logoRepository logo
  • Communities & Collections
  • Research Outputs
  • Employees
  • AAAHigh contrastHigh contrast
    EN PL
    • Log In
      Have you forgotten your password?
AAAHigh contrastHigh contrast
EN PL
  • Log In
    Have you forgotten your password?
  1. Home
  2. Bibliografia UPP
  3. Bibliografia UPP
  4. The Prediction of Pectin Viscosity Using Machine Learning Based on Physical Characteristics—Case Study: Aglupectin HS-MR
 
Full item page
Options

The Prediction of Pectin Viscosity Using Machine Learning Based on Physical Characteristics—Case Study: Aglupectin HS-MR

Type
Journal article
Language
English
Date issued
2024
Author
Siejak, Przemysław 
Przybył, Krzysztof 
Masewicz, Łukasz 
Walkowiak, Katarzyna 
Rezler, Ryszard 
Baranowska, Hanna Maria 
Faculty
Wydział Nauk o Żywności i Żywieniu
Journal
Sustainability
ISSN
2071-1050
DOI
10.3390/su16145877
Volume
16
Number
14
Abstract (EN)
In the era of technology development, the optimization of production processes, quality control and at the same time increasing production efficiency without wasting food, artificial intelligence is becoming an alternative tool supporting many decision-making processes. The work used modern machine learning and physical analysis tools to evaluate food products (pectins). Various predictive models have been presented to estimate the viscosity of pectin. Based on the physical analyses, the characteristics of the food product were isolated, including L*a*b* color, concentration, conductance and pH. Prediction was determined using the determination index and loss function for individual machine learning algorithms. As a result of the work, it turned out that the most effective estimation of pectin viscosity was using Decision Tree (R2 = 0.999) and Random Forest (R2 = 0.998). In the future, the prediction of pectin properties in terms of viscosity recognition may be significantly perceived, especially in the food and pharmaceutical industries. Predicting the natural pectin substrate may contribute to improving quality, increasing efficiency and at the same time reducing losses of the obtained final product.
Keywords (EN)
  • pectin viscosity

  • machine learning

  • prediction

  • color L*a*b*

  • concentration

  • conductance

  • pH

License
cc-bycc-by CC-BY - Attribution
Open access date
July 10, 2024
Fundusze Europejskie
  • About repository
  • Contact
  • Privacy policy
  • Cookies

Copyright 2025 Uniwersytet Przyrodniczy w Poznaniu

DSpace Software provided by PCG Academia