Szanowni Państwo, w związku z bardzo dużą ilością zgłoszeń, rejestracją danych w dwóch systemach bibliograficznych, a jednocześnie zmniejszonym zespołem redakcyjnym proces rejestracji i redakcji opisów publikacji jest wydłużony. Bardzo przepraszamy za wszelkie niedogodności i dziękujemy za Państwa wyrozumiałość.
Repository logoRepository logoRepository logoRepository logo
Repository logoRepository logoRepository logoRepository logo
  • Communities & Collections
  • Research Outputs
  • Employees
  • AAAHigh contrastHigh contrast
    EN PL
    • Log In
      Have you forgotten your password?
AAAHigh contrastHigh contrast
EN PL
  • Log In
    Have you forgotten your password?
  1. Home
  2. Bibliografia UPP
  3. Bibliografia UPP
  4. Efficiency of Identification of Blackcurrant Powders Using Classifier Ensembles
 
Full item page
Options

Efficiency of Identification of Blackcurrant Powders Using Classifier Ensembles

Type
Journal article
Language
English
Date issued
2024
Author
Przybył, Krzysztof 
Walkowiak, Katarzyna 
Kowalczewski, Przemysław Łukasz 
Faculty
Wydział Nauk o Żywności i Żywieniu
Journal
Foods
ISSN
2304-8158
DOI
10.3390/foods13050697
Web address
https://www.mdpi.com/2304-8158/13/5/697
Volume
13
Number
5
Pages from-to
art. 697
Abstract (EN)
In the modern times of technological development, it is important to select adequate methods to support various food and industrial problems, including innovative techniques with the help of artificial intelligence (AI). Effective analysis and the speed of algorithm implementation are key points in assessing the quality of food products. Non-invasive solutions are being sought to achieve high accuracy in the classification and evaluation of various food products. This paper presents various machine learning algorithm architectures to evaluate the efficiency of identifying blackcurrant powders (i.e., blackcurrant concentrate with a density of 67 °Brix and a color coefficient of 2.352 (E520/E420) in combination with the selected carrier) based on information encoded in microscopic images acquired via scanning electron microscopy (SEM). Recognition of blackcurrant powders was performed using texture feature extraction from images aided by the gray-level co-occurrence matrix (GLCM). It was evaluated for quality using individual single classifiers and a metaclassifier based on metrics such as accuracy, precision, recall, and F1-score. The research showed that the metaclassifier, as well as a single random forest (RF) classifier most effectively identified blackcurrant powders based on image texture features. This indicates that ensembles of classifiers in machine learning is an alternative approach to demonstrate better performance than the existing traditional solutions with single neural models. In the future, such solutions could be an important tool to support the assessment of the quality of food products in real time. Moreover, ensembles of classifiers can be used for faster analysis to determine the selection of an adequate machine learning algorithm for a given problem.
Keywords (EN)
  • machine learning

  • classifiers ensembles

  • metaclassifier

  • random forest (RF)

  • gray-level co-occurrence matrix ...

  • texture

  • blackcurrant powders

License
cc-bycc-by CC-BY - Attribution
Open access date
February 24, 2024
Fundusze Europejskie
  • About repository
  • Contact
  • Privacy policy
  • Cookies

Copyright 2025 Uniwersytet Przyrodniczy w Poznaniu

DSpace Software provided by PCG Academia