Now showing 1 - 11 of 11
No Thumbnail Available
Publication

Changes in the Phase Composition of Calcium Aluminoferrites Based on the Synthesis Condition and Al2O3/Fe2O3 Molar Ratio

2023, Pyzalski, Michał, Brylewski, Tomasz, Sujak, Agnieszka, Durczak, Karol

The presented work concerns the study of the changes in the phase composition of calcium aluminoferrites which depend on the synthesis conditions and the selection of the Al2O3/Fe2O3 molar ratio (A/F). The A/F molar ratio extends beyond the limiting composition of C6A2F (6CaO·2Al2O3·Fe2O) towards phases richer in Al2O3. An increase in the A/F ratio above unity favours the formation of other crystalline phases such as C12A7 and C3A, in addition to calcium aluminoferrite. Slow cooling of melts characterised by an A/F ratio below 0.58, results in the formation of a single calcium aluminoferrite phase. Above this ratio, the presence of varying contents of C12A7 and C3A phases was found. The process of rapid cooling of the melts with an A/F molar ratio approaching the value of four favours the formation of a single phase with variable chemical composition. Generally, an increase in the A/F ratio above the value of four generates the formation of a calcium aluminoferrite amorphous phase. The rapidly cooled samples with compositions of C22.19A10.94F and C14.61A6.29F were fully amorphous. Additionally, this study shows that as the A/F molar ratio of the melts decreases, the elemental cell volume of the calcium aluminoferrites decreases.

No Thumbnail Available
Publication

Cement Carbonation Under Fermentation Conditions as a Tool for CO2 Emission Management—Technological, Environmental and Economic Analysis

2025, Pyzalski, Michał, Juszczyk, Michał, Durczak, Karol, Sala, Dariusz, Duda, Joanna, Dudek, Marek, Ustinovičius, Leonas

The aim of this study is an interdisciplinary assessment of the potential of cement pastes to permanently bind carbon dioxide (CO2) under anaerobic digestion conditions, considering technological, microstructural, environmental, and economic aspects. The research focused on three types of Portland cement: CEM I 52.5N, CEM I 42.5R-1, and CEM I 42.5R-2, differing in phase composition and reactivity, which were evaluated in terms of their carbonation potential and resistance to chemically aggressive environments. The cement pastes were prepared with a water-to-cement ratio of 0.5 and subjected to 90-day exposure in two environments: a reference environment (tap water) and a fermentation environment (aqueous suspension of poultry manure simulating biogas reactor conditions). XRD, TG/DTA, SEM/EDS, and mercury intrusion porosimetry were applied to analyze CO2 mineralization, phase changes, and microstructural evolution. XRD results revealed a significant increase in calcite content (e.g., for CEM I 52.5N from 5.9% to 41.1%) and the presence of vaterite (19.3%), indicating intense carbonation under organic conditions. TG/DTA analysis confirmed a reduction in portlandite and C-S-H phases, suggesting their transformation into stable carbonate forms. SEM observations and EDS analysis revealed well-developed calcite crystals and the dominance of Ca, C, and O, confirming effective CO2 binding. In control samples, hydration products predominated without signs of mineralization. The highest sequestration potential was observed for CEM I 52.5N, while cements with higher C3A content (e.g., CEM I 42.5R-2) exhibited lower chemical resistance. The results confirm that carbonation under fermentation conditions may serve as an effective tool for CO2 emission management, contributing to improved durability of construction materials and generating measurable economic benefits in the context of climate policy and the EU ETS. The article highlights the need to integrate CO2 sequestration technologies with emission management systems and life cycle assessment (LCA) of biogas infrastructure, supporting the transition toward a low-carbon economy.

No Thumbnail Available
Publication

Convolutional neural network model for the qualitative evaluation of geometric shape of carrot root

2024, Rybacki, Piotr, Sawinska, Zuzanna, Kačániová, Miroslava, Kowalczewski, Przemysław Łukasz, Osuch, Andrzej, Durczak, Karol

The main objective of the study is the development of an automatic carrot root classification model, marked as CR-NET, with the use of a Convolutional Neural Network (CNN). CNN with a constant architecture was built, consistingof an alternating arrangement of five Conv2D, MaxPooling2D and Dropout classes, for which in the Python 3.9 programming language a calculation algorithm was developed. It was found that the classification process of the carrot root images was carried out with an accuracy of 89.06%, meaning that 50 images were misclassified. The highest number of 21 erroneously classified photographs were from the extra class, of which 15 to the first class, thus not resulting in significant loss. However, assuming the number of refuse as the classification basis, the model accuracy greatly increases to 98.69%, as only 6 photographs were erroneously assigned.

No Thumbnail Available
Publication

Correction: Durczak et al. Modern Methods of Asbestos Waste Management as Innovative Solutions for Recycling and Sustainable Cement Production. Sustainability 2024, 16, 8798

2025, Durczak, Karol, Pyzalski, Michał, Brylewski, Tomasz, Juszczyk, Michał, Leśniak, Agnieszka, Libura, Marek, Ustinovičius, Leonas, Vaišnoras, Mantas

The authors would like to make the following corrections to the published paper [...]

No Thumbnail Available
Publication

Synthesis and Investigation of the Hydration Degree of CA2 Phase Modified with Boron and Fluorine Compounds

2024, Pyzalski, Michał, Durczak, Karol, Sujak, Agnieszka, Juszczyk, Michał, Brylewski, Tomasz, Stasiak, Mateusz

This study investigated the effect of fluoride and boron compound additives on the synthesis and hydration process of calcium aluminate (CA2). The analysis showed that the temperature of the full synthesis of CA2 without mineralizing additives was 1500 °C. However, the addition of fluorine and boron compounds at 1% and 3% significantly reduced the synthesis temperature to a range of 1100–1300 °C. The addition of fluoride compounds did not result in the formation of fluoride compounds from CaO and Al2O3, except for the calcium borate phase (Ca3(BO3)2) under certain conditions. In addition, the cellular parameters of the synthesized calcium aluminate phases were not affected by the use of these additives. Hydration studies showed that fluoride additives accelerate the hydration process, potentially improving mechanical properties, while boron additives slow down the reaction with water. These results highlight the relevance of fluoride and boron additives to the synthesis process and hydration kinetics of calcium aluminate, suggesting the need for further research to optimize their application in practice. TG studies confirmed the presence of convergence with respect to X-ray determinations made. SEM, EDS and elemental concentration maps confirmed the presence of a higher Al/Ca ratio in the samples and also showed the presence of hexagonal and regular hydration products.

No Thumbnail Available
Publication

Smart Resource Management and Energy-Efficient Regimes for Greenhouse Vegetable Production

2025, Dudnyk, Alla, Pasichnyk, Natalia, Yakymenko, Inna, Lendiel, Taras, Witaszek, Kamil, Durczak, Karol, Czekała, Wojciech

Greenhouse vegetable production faces significant challenges due to the non-stationary and nonlinear dynamics of the cultivation environment, which demand adaptive and intelligent control strategies. This study presents an intelligent control system for greenhouse complexes based on artificial neural networks and fuzzy logic, optimized using genetic algorithms. The proposed system dynamically adjusts PI controller parameters to maintain optimal microclimatic conditions, including temperature and humidity, enhancing resource efficiency. Comparative analyses demonstrate that the genetic algorithm-based tuning outperforms traditional and fuzzy adaptation methods, achieving superior transient response with reduced overshoot and settling time. Implementation of the intelligent control system results in energy savings of 10–12% compared to conventional stabilization algorithms, while improving decision-making efficiency for electrotechnical subsystems such as heating and ventilation. These findings support the development of resource-efficient cultivation regimes that reduce energy consumption, stabilize agrotechnical parameters, and increase profitability in greenhouse vegetable production. The approach offers a scalable and adaptable solution for modern greenhouse automation under varying environmental conditions.

No Thumbnail Available
Publication

The Energy Footprint in the EU: How CO2 Emission Reductions Drive Sustainable Development

2025, Sala, Dariusz, Liashenko, Oksana, Pyzalski, Michał, Pavlov, Kostiantyn, Pavlova, Olena, Durczak, Karol, Chornyi, Roman

Understanding how sectoral CO2 emissions shape sustainable development outcomes is essential for designing effective energy and economic strategies within the European Union (EU). This study presents a multidimensional analysis of CO2 emissions, the contributions of individual sectors, and their connections to the Sustainable Development Goals (SDGs). Using Bayesian network analysis, the research identifies significant interdependencies between emission reductions and progress in sustainable development, highlighting the complex relationship between energy transition, economic growth, and social justice. The findings show that total CO2 emissions in the EU have decreased since 1990; however, the rate of reduction varies across sectors and member states. The most substantial decreases have been recorded in the energy sector, while industrial processes and agriculture show slower progress. Economic crises, such as the 2008 financial collapse and the COVID-19 pandemic, have led to temporary declines in emissions; however, lasting achievements in sustainability require structural transformations rather than short-term disruptions. The Bayesian model reveals strong connections between emission reductions and progress on clean energy (SDG 7), responsible consumption (SDG 12), and climate action (SDG 13), while also indicating indirect impacts on economic growth (SDG 8) and social equity. This highlights the importance of integrated policymaking to maximise the benefits of sustainable development. This study provides a data-driven foundation for enhancing EU climate strategies, ensuring that emission reductions support environmental goals, economic resilience, and social well-being.

No Thumbnail Available
Publication

Wear Detection of Extruder Elements Based on Current Signature by Means of a Continuous Wavelet Transform

2023, Danielak, Marek, Witaszek, Kamil, Ekielski, Adam, Żelaziński, Tomasz, Dudnyk, Alla, Durczak, Karol

Assessing the wear of components in a single-screw extruder and its condition during the process is difficult. In this context, wavelet analysis was used to investigate the wear condition of extruder elements, which yielded data on current waveforms obtained from 1 kHz frequency converters. To date, no tests of this type have been conducted on single-screw food extruders, which further emphasizes the relevance of the research undertaken by the authors. Experimental tests have been conducted to verify the hypothesis that it is possible to assess the level of wear of the working elements of an extruder by monitoring the variations in the frequencies on the current spectrum using wavelet analysis tools. The root mean square (RMS) values of the current were compared for two configurations of the working elements of the device, i.e., new and used. Observation of the frequency variations of the current spectrum values using wavelet analysis tools can provide valuable information on the technical condition of the working elements of an industrial extruder. Therefore, they can indicate the need for prompt replacement of friction elements in order to improve the efficiency and performance of the machine.

No Thumbnail Available
Publication

Efficient Management of Asbestos Waste Through Utilization as Mineral Additives in Portland Cement Production

2024, Durczak, Karol, Pyzalski, Michał, Sujak, Agnieszka, Juszczyk, Michał, Sala, Dariusz, Ustinovichius, Leonas

This article presents research on the effectiveness of utilizing asbestos waste, particularly chrysotile asbestos, in the production of Portland cement. The study aimed to evaluate the feasibility of transforming asbestos cement (Eternit) through thermal treatment and its enrichment with mineral additives, enabling its integration into the clinker synthesis process. Differences in the physicochemical properties of types of cement produced from conventional raw materials and those manufactured using asbestos waste were analyzed. The research findings indicate that the presence of asbestos in cementitious materials leads to a significant mass loss of 29.4% due to thermal decomposition. Chemical analysis revealed the presence of aluminum oxide (Al2O3) and iron oxide (Fe2O3) at levels of 4.10% and 3.54%, respectively, suggesting the formation of brownmillerite, a phase typical of cement clinker. Furthermore, compressive strength tests on asbestos-modified cements demonstrated comparable mechanical properties to reference cement (CEM I), indicating their potential applicability in construction. This study provides essential insights into the mineralogical composition of asbestos cement, which is crucial for developing effective methods for its safe disposal. It represents a significant step toward sustainable asbestos waste management and the promotion of innovative solutions in the construction industry.

No Thumbnail Available
Publication

Modern Methods of Asbestos Waste Management as Innovative Solutions for Recycling and Sustainable Cement Production

2024, Durczak, Karol, Pyzalski, Michał, Brylewski, Tomasz, Juszczyk, Michał, Leśniak, Agnieszka, Libura, Marek, Ustinovičius, Leonas, Vaišnoras, Mantas

Managing asbestos waste presents a significant challenge due to the widespread industrial use of this material, and the serious health and environmental risks it poses. Despite its unique properties, such as resistance to high temperatures and substantial mechanical strength, asbestos is a material with well-documented toxicity and carcinogenicity. Ensuring the safe removal and disposal of asbestos-containing materials (ACM) is crucial for protecting public health, the environment, and for reducing CO2 emissions resulting from inefficient waste disposal methods. Traditional landfill disposal methods have proven inadequate, while modern approaches—including thermal, chemical, biotechnological, and mechanochemical methods—offer potential benefits but also come with limitations. In particular, thermal techniques that allow for asbestos degradation can significantly reduce environmental impact, while also providing the opportunity to repurpose disposal products into materials useful for cement production. Cement, a key component of concrete, can serve as a sustainable alternative, minimizing CO2 emissions and reducing the need for primary raw materials. This work provides insights into research on asbestos waste management, offering a deeper understanding of key initiatives related to asbestos removal. It presents a comprehensive review of best practices, innovative technologies, and safe asbestos management strategies, with particular emphasis on their impact on sustainable development and CO2 emission reduction. Additionally, it discusses public health hazards related to exposure to asbestos fibers, and worker protection during the asbestos disposal process. As highlighted in the review, one promising method is the currently available thermal degradation of asbestos. This method offers real opportunities for repurposing asbestos disposal products for cement production; thereby reducing CO2 emissions, minimizing waste, and supporting sustainable construction.

No Thumbnail Available
Patent

System do biologicznej inaktywacji pulweryzacyjnej ścieków bytowych w przyczepach asenizacyjnych

2020, KAROL DURCZAK, EWA OSUCH, STANISŁAW PODSIADŁOWSKI, STANISŁAW PRAWNICZAK, JACEK JAN PRZYBYŁ