Implications of Isomorphism in the Family of Apatite Compounds

cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid0000-0001-9832-9274
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid0000-0002-4867-195X
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid36173a57-3417-4bf8-99ea-e027717d422c
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid0241aa31-988f-4deb-9623-97f29e43d000
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
dc.abstract.enApatites are very important compounds of mineralogical and biological meaning. Apatites originated from the calcium hydroxy compound 3Ca3(PO4)2·Ca(OH)2 and potentially might form three series of isomorphic salts, derived from cationic substitutions in the positions of Ca(I) and Ca(II) ions in the core compound; anionic substitutions of phosphates; and substitutions of anions and very simple chemical entities instead of the hydroxyl group in channel locations. The energies coupled with the ion exchanges inside those three locations were studied using our original method resulting from the transformation of Braggs’ law. The energy changes resulting from the ion exchanges were studied in connection with either the ionic radii for the cations or ionic volumes for the anions. The same series were observed when the variabilities of energy were confronted with the variabilities in the sinus of diffraction angle Θ showing changes in momentum transfer. In particular, the relationships between the energy changes and the coupled changes in the universal crystallographic parameter d showed the surprising uniformity of all ion exchanges in the apatites. The incremental change in the Braggs’ d-parameter always demands the same change in the energy, with good approximation, independently of the location of the ion exchange. So, the isomorphism of the apatites is not triple but a uniform one at the energy level. Such an approach enables the estimation of the volume of the ion-□ (□-vacancies) agglomerates. The introduction of ions with greater volumes exerts the phenomenon of swelling of apatite cells, which can be quantitatively estimated. The dependence of diffraction spectra on the temperature allows for the determination of minimal values of crystallographic cell volumes and d parameters at the temperature of 0 K. In sum, the study of energies connected with the change of Bragg dimension d is a new and valuable method of insight into the behaviour of apatite crystals.
dc.affiliationWydział Nauk o Żywności i Żywieniu
dc.affiliationWydział Leśny i Technologii Drewna
dc.affiliation.instituteKatedra Fizyki i Biofizyki
dc.affiliation.instituteKatedra Mechanicznej Technologii Drewna
dc.contributor.authorLasota, Agnieszka
dc.contributor.authorGorzelak, Mieczysław
dc.contributor.authorBis, Emanuela
dc.contributor.authorBiliński, Przemysław
dc.contributor.authorGieburowski, Krzysztof
dc.contributor.authorKłapeć, Wojciech
dc.contributor.authorTymczyna-Borowicz, Barbara
dc.contributor.authorŁobacz, Michał
dc.contributor.authorPawlicz, Jarosław
dc.contributor.authorJarzębski, Maciej
dc.contributor.authorWieruszewski, Marek
dc.contributor.authorTurżańska, Karolina
dc.contributor.authorJabłoński, Mirosław
dc.contributor.authorKuczumow, Andrzej
dc.date.access2025-06-16
dc.date.accessioned2025-06-16T08:36:09Z
dc.date.available2025-06-16T08:36:09Z
dc.date.copyright2025-05-06
dc.date.issued2025
dc.description.abstract<jats:p>Apatites are very important compounds of mineralogical and biological meaning. Apatites originated from the calcium hydroxy compound 3Ca3(PO4)2·Ca(OH)2 and potentially might form three series of isomorphic salts, derived from cationic substitutions in the positions of Ca(I) and Ca(II) ions in the core compound; anionic substitutions of phosphates; and substitutions of anions and very simple chemical entities instead of the hydroxyl group in channel locations. The energies coupled with the ion exchanges inside those three locations were studied using our original method resulting from the transformation of Braggs’ law. The energy changes resulting from the ion exchanges were studied in connection with either the ionic radii for the cations or ionic volumes for the anions. The same series were observed when the variabilities of energy were confronted with the variabilities in the sinus of diffraction angle Θ showing changes in momentum transfer. In particular, the relationships between the energy changes and the coupled changes in the universal crystallographic parameter d showed the surprising uniformity of all ion exchanges in the apatites. The incremental change in the Braggs’ d-parameter always demands the same change in the energy, with good approximation, independently of the location of the ion exchange. So, the isomorphism of the apatites is not triple but a uniform one at the energy level. Such an approach enables the estimation of the volume of the ion-□ (□-vacancies) agglomerates. The introduction of ions with greater volumes exerts the phenomenon of swelling of apatite cells, which can be quantitatively estimated. The dependence of diffraction spectra on the temperature allows for the determination of minimal values of crystallographic cell volumes and d parameters at the temperature of 0 K. In sum, the study of energies connected with the change of Bragg dimension d is a new and valuable method of insight into the behaviour of apatite crystals.</jats:p>
dc.description.accesstimeat_publication
dc.description.bibliographyil., bibliogr.
dc.description.financepublication_nocost
dc.description.financecost0,00
dc.description.if4,9
dc.description.number9
dc.description.points140
dc.description.versionfinal_published
dc.description.volume26
dc.identifier.doi10.3390/ijms26094397
dc.identifier.eissn1422-0067
dc.identifier.issn1661-6596
dc.identifier.urihttps://sciencerep.up.poznan.pl/handle/item/2850
dc.identifier.weblinkhttps://www.mdpi.com/1422-0067/26/9/4397
dc.languageen
dc.relation.ispartofInternational Journal of Molecular Sciences
dc.relation.pagesart. 4397
dc.rightsCC-BY
dc.sciencecloudsend
dc.share.typeOPEN_JOURNAL
dc.subject.enisomorphism
dc.subject.enapatite
dc.subject.enenergy of ion exchange substitutions
dc.subject.encations
dc.subject.enanions
dc.subject.enchannel ions
dc.titleImplications of Isomorphism in the Family of Apatite Compounds
dc.typeJournalArticle
dspace.entity.typePublication
oaire.citation.issue9
oaire.citation.volume26