Conservation of model degraded pine wood with selected organosilicons studied by XFM and nanoindentation

cris.virtual.author-orcid0000-0002-6947-9019
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid7b4d6fa7-016d-4f87-a041-42ee4800e1ca
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
dc.abstract.enPrevious research found that some organosilicon treatments proved effective in stabilizing waterlogged wood dimensions during drying. The present research aimed to determine the mechanism of wood stabilization by these chemicals to understand their mode of action. The study used chemically (ChP) and biologically degraded (BP) model Scots pine wood treated with Methyltrimethoxysilane (MTMS), (3-Mercaptopropyl) trimethoxysilane (MPTMS), or 1,3-Bis(diethylamino)-3-propoxypropanol)-1,1,3,3-tetramethyldisiloxane (DEAPTMDS). Synchrotron-based X-ray fluorescence microscopy (XFM) was used to investigate the penetration of organosilicons into the wood cellular structure and cell walls, and nanoindentation was used to study the mechanical properties of the treated wood cell walls. All treatments resulted in high volumetric anti-shrink efficiency (ASEV) values of 74–82%, except for MTMS-treated ChP with an ASEV of 52%. The multiscale XFM results revealed that all applied organosilicons penetrated throughout the whole wooden blocks and deposited in both cell lumina and cell walls. The retention of all applied organosilicons was highest in BP wood, and so was the dimensional stabilization effect. MTMS-treated ChP had the lowest measured cell wall infiltration, which likely contributed to its lower ASEv. DEAPTMDS treatments plasticized the cell walls and resulted in lowered nanoindentation elastic modulus (EsNI) and hardness (H) for all types of wood. MTMS and MPTMS had modest effects on cell wall mechanical properties, and the effect depended on the type of wood. The final effect of organosilicon treatment on the dimensional wood stabilization and mechanical properties of wood cell walls depended not only on the type of the applied organosilicon but also the type of wood degradation. This means that the treatment cannot be considered universal, and specific approaches are needed for the conservation of individual wooden objects. Although some mechanisms are now better understood, such as the need for organosilicons to infiltrate the cell walls and the plasticizing effect of DEAPTMDS, other aspects will benefit from a more detailed analysis of the molecular interactions between organosilicons and wood polymers.
dc.affiliationWydział Leśny i Technologii Drewna
dc.affiliation.instituteKatedra Nauki o Drewnie i Techniki Cieplnej
dc.contributor.authorBroda, Magdalena
dc.contributor.authorJakes, Joseph E.
dc.contributor.authorLi, Luxi
dc.contributor.authorAntipova, Olga A.
dc.contributor.authorMaxey, Evan R.
dc.contributor.authorJin, Qiaoling
dc.contributor.institutionUniwersytet Przyrodniczy w Poznaniu
dc.contributor.institutionForest Products Laboratory
dc.contributor.institutionAdvanced Photon Source, Argonne National Laboratory
dc.date.access2024-10-14
dc.date.accessioned2024-10-14T11:35:54Z
dc.date.available2024-10-14T11:35:54Z
dc.date.copyright2024-02-10
dc.date.issued2024
dc.description.accesstimeat_publication
dc.description.bibliographyil., bibliogr.
dc.description.financepublication_nocost
dc.description.financecost0,00
dc.description.if3,1
dc.description.number2
dc.description.points200
dc.description.versionfinal_published
dc.description.volume58
dc.identifier.doihttps://doi.org/10.1007/s00226-024-01533-6
dc.identifier.eissn1432-5225
dc.identifier.issn0043-7719
dc.identifier.urihttps://sciencerep.up.poznan.pl/handle/item/1841
dc.languageen
dc.pbn.affiliationforestry
dc.relation.ispartofWood Science and Technology
dc.relation.pages649-675
dc.rightsCC-BY
dc.sciencecloudsend
dc.subject.endegraded wood
dc.subject.enwood conservation
dc.subject.enwood consolidation
dc.subject.endimensional stabilization
dc.subject.endimensional stability
dc.subject.ensilane
dc.subject.ensiloxane
dc.subject.ennanoindentation
dc.subject.encell wall infiltration
dc.subject.pldrewno zdegradowane
dc.subject.plkonserwacja drewna
dc.subject.plkonsolidacja drewna
dc.subject.plstabilizacja wymiarowa
dc.subject.plstabilność wymiarowa
dc.subject.plsilan
dc.subject.plsiloksan
dc.subject.plnanoindentacja
dc.subject.plinfiltracja ściany komórkowej
dc.titleConservation of model degraded pine wood with selected organosilicons studied by XFM and nanoindentation
dc.typeJournalArticle
dspace.entity.typePublication
oaire.citation.issue2
oaire.citation.volume58