D-optimal strain sensor placement for mechanical load estimation in the presence of nuisance loads and thermal strain

cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid0000-0001-9428-8938
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcidd0e13c3e-31a7-440d-b6fd-c5ae1aeaab90
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
dc.abstract.enThe measurement of loads in circular cross-section geometries using strain gauges or other types of strain sensors is well-known in the field of mechanical engineering. Typical stress measurement configurations use 4 strain sensors strategically placed on the surface of the shaft and connected in the form of a complete Wheatstone bridge. Thus, 4 strain sensors are used to estimate each of the six load components to which a shaft may be subjected. Some typical configurations are designed to compensate for temperature effects, making them robust to temperature changes. Despite being used for decades, there is no record of any algorithm that serves to calculate these configurations, demonstrate that they are optimal or determine new configurations with other requirements. In this article, an algorithm is developed that allows calculating the optimal configurations of strain sensors to estimate one or several load components, compensating for the effect of other loads and temperature variations. This algorithm is based on the measurement of the strain of each gauge using Wheatstone quarter bridges and uses the same set of sensors for the estimation of various load components. The results are two-fold: on the one hand the traditional configurations are shown to be optimal and on the other hand a series of additional optimal configurations are obtained to estimate various sets of load components compensating for the influence of the rest. Additionally, a means of calculating the estimation variance of the loads of interest is provided.
dc.affiliationWydział Rolnictwa, Ogrodnictwa i Biotechnologii
dc.affiliation.instituteKatedra Metod Matematycznych i Statystycznych
dc.contributor.authorIriarte, Xabier
dc.contributor.authorBacaicoa, Julen
dc.contributor.authorAginaga, Jokin
dc.contributor.authorPlaza, Aitor
dc.contributor.authorSzczepańska-Alvarez, Anna
dc.date.accessioned2025-07-28T08:43:01Z
dc.date.available2025-07-28T08:43:01Z
dc.date.issued2025
dc.description.bibliographyil., bibliogr.
dc.description.financepublication_nocost
dc.description.financecost0,00
dc.description.if4,9
dc.description.points100
dc.description.reviewreview
dc.description.volume382
dc.identifier.doi10.1016/j.sna.2024.116110
dc.identifier.eissn1873-3069
dc.identifier.issn0924-4247
dc.identifier.urihttps://sciencerep.up.poznan.pl/handle/item/3991
dc.languageen
dc.relation.ispartofSensors and Actuators, A: Physical
dc.relation.pagesart. 116110
dc.rightsClosedAccess
dc.sciencecloudsend
dc.subject.enstrain sensors
dc.subject.enoptimal sensor placement
dc.subject.ennuisance parameters
dc.subject.enload estimation
dc.titleD-optimal strain sensor placement for mechanical load estimation in the presence of nuisance loads and thermal strain
dc.typeJournalArticle
dspace.entity.typePublication
oaire.citation.volume382