Modeling light response of effective quantum efficiency of photosystem II for C3 and C4 crops

cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid0000-0001-5564-7360
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid62199eda-fe32-456c-9935-2e55f2101f3a
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtualsource.author-orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
dc.abstract.enEffective quantum efficiency of photosystem II (ΦPSII) represents the proportion of photons of incident light that are actually used for photochemical processes, which is a key determinant of crop photosynthetic efficiency and productivity. A robust model that can accurately reproduce the nonlinear light response of ΦPSII (ΦPSII–I) over the I range from zero to high irradiance levels is lacking. In this study, we tested a ΦPSII–I model based on the fundamental properties of light absorption and transfer of energy to the reaction centers via photosynthetic pigment molecules. Using a modeling-observation intercomparison approach, the performance of our model versus three widely used empirical ΦPSII–I models were compared against observations for two C3 crops (peanut and cotton) and two cultivars of a C4 crop (sweet sorghum). The results highlighted the significance of our model in (1) its accurate and simultaneous reproduction of light response of both ΦPSII and the photosynthetic electron transport rate (ETR) over a wide I range from light limited to photoinhibition I levels and (2) accurately returning key parameters defining the light response curves.
dc.affiliationWydział Leśny i Technologii Drewna
dc.affiliation.instituteKatedra Hodowli Lasu
dc.contributor.authorYang, Xiao-Long
dc.contributor.authorAn, Ting
dc.contributor.authorYe, Zi-Wu-Yin
dc.contributor.authorKang, Hua-Jing
dc.contributor.authorRobakowski, Piotr
dc.contributor.authorYe, Zi-Piao
dc.contributor.authorWang, Fu-Biao
dc.contributor.authorZhou, Shuang-Xi
dc.date.access2025-08-28
dc.date.accessioned2025-08-28T08:32:37Z
dc.date.available2025-08-28T08:32:37Z
dc.date.copyright2025-03-06
dc.date.issued2025
dc.description.abstract<jats:p>Effective quantum efficiency of photosystem II (Φ<jats:sub>PSII</jats:sub>) represents the proportion of photons of incident light that are actually used for photochemical processes, which is a key determinant of crop photosynthetic efficiency and productivity. A robust model that can accurately reproduce the nonlinear light response of Φ<jats:sub>PSII</jats:sub> (Φ<jats:sub>PSII</jats:sub>–<jats:italic>I</jats:italic>) over the I range from zero to high irradiance levels is lacking. In this study, we tested a Φ<jats:sub>PSII</jats:sub>–<jats:italic>I</jats:italic> model based on the fundamental properties of light absorption and transfer of energy to the reaction centers via photosynthetic pigment molecules. Using a modeling-observation intercomparison approach, the performance of our model versus three widely used empirical Φ<jats:sub>PSII</jats:sub>–<jats:italic>I</jats:italic> models were compared against observations for two C<jats:sub>3</jats:sub> crops (peanut and cotton) and two cultivars of a C<jats:sub>4</jats:sub> crop (sweet sorghum). The results highlighted the significance of our model in (1) its accurate and simultaneous reproduction of light response of both Φ<jats:sub>PSII</jats:sub> and the photosynthetic electron transport rate (<jats:italic>ETR</jats:italic>) over a wide I range from light limited to photoinhibition <jats:italic>I</jats:italic> levels and (2) accurately returning key parameters defining the light response curves.</jats:p>
dc.description.accesstimeat_publication
dc.description.bibliographyil., bibliogr.
dc.description.financepublication_nocost
dc.description.financecost0,00
dc.description.if4,8
dc.description.points100
dc.description.versionfinal_published
dc.description.volume16
dc.identifier.doi10.3389/fpls.2025.1478346
dc.identifier.issn1664-462X
dc.identifier.urihttps://sciencerep.up.poznan.pl/handle/item/4461
dc.identifier.weblinkhttps://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2025.1478346/full
dc.languageen
dc.pbn.affiliationforestry
dc.relation.ispartofFrontiers in Plant Science
dc.relation.pagesart. 1478346
dc.rightsCC-BY
dc.sciencecloudsend
dc.share.typeOPEN_JOURNAL
dc.subject.enYe model
dc.subject.eneffective quantum efficiency of photosystem II (FPSII)
dc.subject.ennon-photochemical quenching
dc.subject.enlight absorption cross-section
dc.subject.enlight-harvesting pigment molecules
dc.subject.enphotosynthetic light response
dc.titleModeling light response of effective quantum efficiency of photosystem II for C3 and C4 crops
dc.typeJournalArticle
dspace.entity.typePublication
oaire.citation.volume16