Szanowni Państwo, w związku z bardzo dużą ilością zgłoszeń, rejestracją danych w dwóch systemach bibliograficznych, a jednocześnie zmniejszonym zespołem redakcyjnym proces rejestracji i redakcji opisów publikacji jest wydłużony. Bardzo przepraszamy za wszelkie niedogodności i dziękujemy za Państwa wyrozumiałość.
Repository logoRepository logoRepository logoRepository logo
Repository logoRepository logoRepository logoRepository logo
  • Communities & Collections
  • Research Outputs
  • Employees
  • AAAHigh contrastHigh contrast
    EN PL
    • Log In
      Have you forgotten your password?
AAAHigh contrastHigh contrast
EN PL
  • Log In
    Have you forgotten your password?
  1. Home
  2. Bibliografia UPP
  3. Bibliografia UPP
  4. Influence of Isocyanate Content and Hot-Pressing Temperatures on the Physical–Mechanical Properties of Particleboard Bonded with a Hybrid Urea–Formaldehyde/Isocyanate Adhesive
 
Full item page
Options

Influence of Isocyanate Content and Hot-Pressing Temperatures on the Physical–Mechanical Properties of Particleboard Bonded with a Hybrid Urea–Formaldehyde/Isocyanate Adhesive

Type
Journal article
Language
English
Date issued
2023
Author
Iswanto, Apri Heri
Sutiawan, Jajang
Darwis, Atmawi
Lubis, Muhammad Adly Rahandi
Pędzik, Marta
Rogoziński, Tomasz 
Fatriasari, Widya
Faculty
Wydział Leśny i Technologii Drewna
Journal
Forests
ISSN
1999-4907
DOI
10.3390/f14020320
Web address
http://www.mdpi.com/1999-4907/14/2/320
Volume
14
Number
2
Pages from-to
art. 320
Abstract (EN)
Particleboard (PB) is mainly produced using urea–formaldehyde (UF) adhesive. However, the low hydrolytic stability of UF leads to poor water resistance by the PB. This research aimed to analyze the effect of hot-pressing temperatures and the addition of methylene diphenyl diisocyanate (MDI) in UF adhesive on the physical and mechanical properties of PB. The first experiment focused on pressing temperature treatments including 130, 140, 150, and 160 °C. The particles were bonded using a combination of UF and MDI resin at a ratio of 70/30 (%w/w). Furthermore, the second experiment focused on UF/MDI ratio treatment, including 100/0, 85/15, 70/30, and 55/45 (%w/w), and the particles were pressed at 140°C. All of the single-layer particleboard in this research were produced in 250 × 250 mm, with a target thickness and density of 10 mm and 750 kg/m3, respectively. This research used 12% resin content based on oven-dry weight wood shaving. The pressing time and pressing pressure were determined to be 10 min and 2.5 N/mm2, respectively. Before the tests, the board was conditioned for 7 days. When studying the effect of treatment temperature, good physical properties (thickness swelling and water absorption) and mechanical properties (MOR and MOE) were obtained at 140 °C. However, no significant difference was observed in the UF/MDI ratio between 85/15 and 55/45 using the same temperature. The increase in the MDI adhesive ratio improves the MOE and MOR values. However, the internal bond was the contrary. This study suggests that a combination of UF/MDI at a ratio of 85/15 and hot-pressing temperature at 140 °C could produce a PB panel that meets a type 8 particleboard according to the JIS A5908-2003 standard and type P2 according to the EN 312-2010 standard.
Keywords (EN)
  • basic properties

  • wood shaving

  • composite

  • composites materials

  • adhesive combination

License
cc-bycc-by CC-BY - Attribution
Open access date
February 6, 2023
Fundusze Europejskie
  • About repository
  • Contact
  • Privacy policy
  • Cookies

Copyright 2025 Uniwersytet Przyrodniczy w Poznaniu

DSpace Software provided by PCG Academia